World!Of
Numbers
HOME plate
WON |

EMBED
The Nine Digits Page 5
with some Ten Digits (pandigital) exceptions
rood Page 1 rood Page 2 rood Page 3 rood Page 4 rood Page 6 rood Page 7


Fifth Page

  Topic 5.13   [ July 15, 2015 ]
Finding a ninedigital as a substring in the decimal expansion
of that same ninedigital raised to a power p

Here I am looking for ninedigitals raised to a power p so that the same
ninedigital pops up as a substring in the decimal expansion of that number.
For that purpose I use UBASIC. One limitation here is that for the largest
ninedigital an overflow occurs when p is greater than 119. Someone who
is equipped with better tools can raise that exponent to higher values and,
no doubt, will certainly find much more solutions. Good hunting! P@rick.

See WONplate 195 for the pandigital version of this topic.

125387649 116 =

24977680256511635554308807465784640450873233766747803697457826665337615090115
65231746558064246784915939331799792083405477295137019822599431230243339336256
71036099290638462808759659688825404030171009447306472501571623792897838640534
77085356208869947832016110312264802555478542369431139240340476254337276270686
34662823179078224977906450230607287868664539203911690841768842604378676955543
90100851394887980264901371704943840980429647269197342633254961700394120603361
43842807514599611962386883891826228850335619243196918128762543471635650559682
38318742855037099538294619343456338486825737070338628267534489179698733254887
09140884645181171985004192856213046111681831479406534681094572418253243315232
83754693737121802777642827488524555131566356534189708692077962292682715962963
10951543077827723454799874681321232284394839374645645842281885435452335843550
95833227039437289409212070147169984083138099798709210400021021253876491425914
0643857408857601

217653498 73 =

45382931250436248017939755904905375074156752993340811447973427529953789857607
32955682451554486827163229743678033027505512286752585680945126547840935996116
54815664694471438604641495185180470978832928274085612674105757197078023302686
63726802021863993886105320204264424109074548867821601860831321946603899915989
29493904262834904701039108240350414664604821797810564424853529625576570072775
66618409001769861258075239997032601466426217653498522505043608739599041141286
06969595596576995845246008728621299765577774490078132467180959116981633437817
8405015126965623686132913457323839428590795742775207720401436156100608

365127984 56 =

31399785292188574093400788496274173401686979859312394666521792490946925319997
76524136398355426736199589711873651279841242087305377690869763740464625716529
59057594291916954556200100043602722007077744099905403348921821982324181941209
69999260251709925043458412798095491979509046250663030898453529337668960610349
03081409266580407331283046683054359019742088912241401726530525075638795375443
40762300436359126476728589070428637730840695632269631597955668180598026800883
697316427481481216

365781249 51 =

53002135104434083974295107729733667717040654846476097425485261220328866855852
71504803441128772764357739017148646788411029412276275042922694892434396254143
48793515708522071862882724102364998434235736846330684845034104402120935766976
01022971282572645737276412472217099390944995575161648761003059841167281107930
16137006513587023917737671292908464672118160331833046277362244795625534877968
6368907675806217728711828836944399284008197365781249

365781249 101 =

76800719919590078432925071974148597876877854062105916684763833185937781705753
83281476183683178644147316682717375665654255225060926550994397177085801874805
26553609913039442760221214744703267598894728210679926761402337567959581385266
21082622518065798159170419928139324519300943918848638348519415234032122155244
05988689600296989099668088818911186434860869532144452751639276824763624763754
04920817120720345528595874747470398626320900446802670284758650353286638757355
75582076312539413336473920504799681382640754693048217806233753987807634460979
23191578353228051041430597711168265165107287178147986560086750154917731725313
59086749279932313619464359933606406209548895901679912639907567337083903120432
99869965011658567583696528762695114783608021250377198923581674468638379220281
62192471621988626202321698325792844640652321364291819301555023466728895229239
568016394365781249

In both cases the expansion ends with our ninedigital !!

In fact I detected a pattern here as for all exponents +50 (starting with 1) it occurs.
1, 51, 101, 151, 201, ...

Can this phenomenon be explained mathematically ?
Yes, as Alexandru Petrescu does with an elegant proof hereunder.

Proof
By Alexandru Petrescu (PhD in applied mathematics) [ April 17, 2022 ]

Let a = 365781249. Condition is: 109 | (a51–a) or 109 | a(a50–1). But gcd(a,109) = 1 so 109 | (a50–1).
Factorization: a50–1 = (a–1)(a+1)(a4–a3+a2–a+1)(a4+a3+a2+a+1)(a20–a15+a10–a5+1)(a20+a15+a10+a5+1)
	a–1 = 365781248 = 28 x 7 x 17 x 12007		(1)
	a+1 = 365781250 = 2 x 57 x 2341			(2)
For any number b having the units digit equal to 9 we have:
	b2k = 1 (mod 10) and b2k+1 = 9 (mod 10)
So:	a4–a3+a2–a+1 = 1–9+1–9+1 = 5 (mod 10)		(3)
	a20–a15+a10–a5+1 = 1–9+1–9+1 = 5 (mod 10)	(4)
From (1)-(4) we have 29 x 59 = 109 | (a50–1).

Generally  109 | (a50p+1–a) because a50p–1 = (a50)p–1 = (a50–1)(....)


The vertical bar "|" stands for 'divides' Pari/gp has a simple command for producing the 6 terms of the factorization of our polynomial (14:00) gp > factor(a^50-1) %1 = [ a - 1 1] [ a + 1 1] [ a^4 - a^3 + a^2 - a + 1 1] [ a^4 + a^3 + a^2 + a + 1 1] [a^20 - a^15 + a^10 - a^5 + 1 1] [a^20 + a^15 + a^10 + a^5 + 1 1]

495126738 61 =

23861578656021269346703174520372315791816251470087567211478523202968124667924
93848688084609784146764549823116272246105113757348275839028643583491902670379
64611114317468350096247548658050991212656177878337691054141810387339185188226
37443389139903195571962109654889436933754829870083357415260689569881177088929
20725614584762139979825699821114369929192812850477252290195382123150020328432
81324949512673878966294790960293349542846852039693433215569689109114314341111
102344236031307150080447721778461888506037971062682424038575401074688

623479581 83 =

93378199229292611484783069958832018204031360211962347958195478201099393097916
34096128381183555954877721494796498660605839598106441880144452469796271440667
05689066988711351184847509304365224018029344080389906241440975034338043383492
65523244487441047103333380133096323111353945707309764846648779004687899784490
95209825853284627548178988792267472945800848267750379848985027317431251568478
10303914183404736553013121265261006876701288947711222743493437503622840039296
31760526249913511031756985513898026705212045956997380233251890795219842954963
98174803095091720475573906927745701371461428793178627967034408092869119201862
69304525412368590073394987109053612598099858622032202094910455231063705993302
5724027684578757254054582767435966341

634812579 98 =

45631141858726733466372929460343476150274704363477974505922266227178826889112
03296142625749780118820787364378776141951859373704464157741137151720607037161
59124655023048774995732874441504376314578129603660792575268298258639078264194
85376075066280259241460659377367254814707313855803853251377152515963933782042
82013024297285193725035357126051237614145162756780783309796660052474365080592
57486561925965907731081653418482644904546883539412866892308710063071186726094
04162947833101908631744436257625261404831947239275944162745006380618099565297
96459806577080966775040859019302889640794901252275276440231781404017352377903
60488874615440260964529302179978922299373037300601770829712001588815559136063
4812579
2841936687381899103964185439346538524710921313754184454000657029185913
07178775895169595052782549109915160489328969529916734441976537436220053655780
8083316053484361

635781249 101 =

13616930906420442043259405929999866138890181953431470395921699407085117760783
79536986744241462996090516980892457600810938519412701377694639547895160589971
79940437644604969159226080307904671668397831678693666758678744510837077805030
78206504513344786576043188805369174334775868464100758383598453386529564392290
31367832734849277419826252716936311745138781812648300098007290980852223803079
72137771591659178231093099603625082034017722405516753317039980819246827005117
36976451379012331388480253663967821868072501222801850425960780267385323754435
07539416471208237069631672456024450838621340577834346701338003303401309670932
01973176630643853667096489340849126751031165929265273487122455492177758908045
89274046128442756534554210620839547826578936054888844310552044248918565678393
81374739820431481832250271626095365734918171778895773396091917556338935202137
3049410410107226308656963293016421635781249

635781249 201 =

29164245973260567384593998725899801391036529801483811790123121455125852321698
22356483494243511951735290740862875830839305968363755966766223109083382183664
88576657374238845416864831751683511906055638926371154956341508787131097544659
79522044789543649215998567411972121286520461446088073616511904873309159121071
74684934306957468357280843825646472100322416427703819568376723780664487397781
36609640440854544270101742492038697981640355680661735059638023384998850172032
66356797551332806280817340906746100461811475325319411146411680855221735010791
53992862953768970337009000514903631071241106546078919582643227455640762805923
03709660963193290082477816666688811748112154031780276816328007053689328670077
19486369454747397333719686514715621111571267203548578415858045081152038488373
19738994264925412594037600610232404954957253834070105970798906085984928801129
90069112802435045442019014381173623658922975667291863467667559295986468544645
95871328306360393761967216238027050306942300675363534043656652175578719662302
89488669296643593144384841208946918403617436312679072638091933929765488568810
57706701231797058492686450589593235151332428321380402982579558838646689565348
91937561213424352699023041796996956645347622484730341432324511585887735175214
61796191282018130190838622236792597334721732103343855693075534342114447377455
01930307417746262714112216038771957185176456937958730457766096901663183790850
21632420423456465784563445754553686156000076963413532065706676351187746174688
24823883482637094613008485441319259453071734490504331011445956738207887289935
52707227273816058424570137298617616776868455983820558158072745229332917127873
20544768174850588910654282156308815210119182479471883285722869803551761642790
5893653672809004042634257177233841040848855367748426195935586032842635781249

In both cases the expansion ends with our ninedigital !!

Here again I detected a pattern as for all exponents +100 (starting with 1) it occurs.
1, 101, 201, 301, ...

Can this phenomenon be explained mathematically ?
Yes, as Alexandru Petrescu does with an elegant proof hereunder.


Proof
By Alexandru Petrescu (PhD in applied mathematics) [ April 18, 2022 ]

Let a = 635781249. Condition is: 109 | (a101–a) or 109 | a(a100–1). But gcd(a,109) = 1 so 109 | (a100–1).
Factorization: a100–1 = (a–1)(a+1)(a2+1)(a4–a3+a2–a+1)(a4+a3+a2+a+1)(a8–a6+a4–a2+1)(a20–a15+a10–a5+1)(a20+a15+a10+a5+1)(a40–a30+a20–a10+1)
	a–1 = 635781248 = 27 x 4967041			(1)
	a+1 = 635781250 = 2 x 57 x 13 x 313		(2)
For any number b having the units digit equal to 9 we have:
	b2k = 1 (mod 10) and b2k+1 = 9 (mod 10)
So:	a4–a3+a2–a+1 = 1–9+1–9+1 = 5 (mod 10)		(3)
	a20–a15+a10–a5+1 = 1–9+1–9+1 = 5 (mod 10)	(4)
	2 | (a2+1)					(5)
From (1)-(5) we have 29 x 59 = 109 | (a100–1).

Generally  109 | (a100p+1–a) because a100p–1 = (a100)p–1 = (a100–1)(....)


The vertical bar "|" stands for 'divides' Pari/gp has a simple command for producing the 9 terms of the factorization of our polynomial (14:00) gp > factor(a^100-1) %1 = [ a - 1 1] [ a + 1 1] [ a^2 + 1 1] [ a^4 - a^3 + a^2 - a + 1 1] [ a^4 + a^3 + a^2 + a + 1 1] [ a^8 - a^6 + a^4 - a^2 + 1 1] [ a^20 - a^15 + a^10 - a^5 + 1 1] [ a^20 + a^15 + a^10 + a^5 + 1 1] [a^40 - a^30 + a^20 - a^10 + 1 1]


759186432 101 =

82260666872235555762250266625924353034740692041723072613225221908129972517410
79368040497793129185854340245930758942254133210108110971390842331027330555511
45540952916667198724287767754930598868574123864483173835155518388996830584546
13989804825083382539061412326421979239699525638449980690283152776976732040942
57670172876623812592321940729721672348124710665628420292270901806076777682020
97119707042032611205871824644392576564139193660812280032933061445605398390813
62055942901999401281725178269911388104228461256806247365431808150705536156893
18074291525522027694579819766996084171946251019573016891903101807872335414382
00201049471880295553020076943765175630219726442008847791105863542328160017318
83759251038778125207733504866110163801274171321479184174034631872273411246535
87680690571780670261116973775768781659632439322592913922927917692091904847243
44882494258519860070773612938144395368838759186432

759186432 201 =

89132484842206877224072333243882506481115047313501101593088591184654074856787
63195684432935384031288734506632618449021116516970989054557921092003073207419
78479610779365972342221373501421522475350316784210568722785016071585147887492
02734539633763612017476752173919263236333819514270305324688561049270188451486
21147118809388065383865436743357629844861804969660154563123016123042313614003
62930246401192497775895803344289731467512848459607878351483474766372717072170
72387197272893442098015714115198644477427427325214673723807387888482089247653
77713292922674286121689642433842212615229467646834807727260832188051558076507
09981257282535659403140674107145053077526002195201874023560057448303561661798
61884410043177391932703549065128308458939699325358798388911019573385219675317
44304617123012875316218376972594091512377127286897587775815981743533912623838
56891318749407882925680202903687650146268327404146267989090593999139072008668
13152327959295675141732681913571442322026768520084206924322401284323051403931
18979626641294646900049725069715540043368443224646343909861329258844132645237
00018024140684898981964083443341171876770172664139574056850248865093599257501
52483471350428752707577072001175666443593196701391561839123177816910486810554
86641171033353320729383984411167679719685156850021899792923469802870824357951
91771977135678534646580603614690229469306152174199854050309718399182634706016
16755110706693758601025701391444170431983397789955190084099233749081100187002
32092470774753064256464083708602000228504033289282060520062030789050191507276
39346252346659300692770630426425612810233260919192116983870103183654164035241
86276734604974270732789976436486933032848696626657420385705659400865290003030
23110278498632320836527984228015516860892875165241714612843846337970412777633
93926759186432

In both cases the expansion ends with our ninedigital !!

Here also I detected a pattern as for all exponents +100 (starting with 1) it occurs.
1, 101, 201, 301, ...

826315794 23 =

12426797981687139976318194833800965760178941008925651967284591535884639168127
69048144289039195619651222534322636314920864225698824936480144264484392524652
8635188413679903582631579460068981211460106226499584

873264591 83 =

13034837372853334164238093382491785728595445636980606552677673905144344811209
36662942425790599835613708911373168631742552867591811425692124430330075409429
94755619948421750835314736209456882857274065496962124999162871439340633338995
04647924034305980271186771316971847687817508159884016625445308567446163138679
20006235542264658107219655488515060394364853003282248342845474873264591141569
44635942228225266830138874923545164149517423839878166331320624862020348714225
05181805029396362821890131393393223912184424551405029731746354590346537906403
67581873950902768490320199664827709531782965695130366107984725738284643788944
02735317759361314929421354339292024390717560432540358188871423020947904182402
43462672111318591628952881312605495336284911804271

With 873264591 I found the largest ninedigital with p < 119 !


  Topic 5.12   [ March 1, 2015 ]
Nine- & pandigitals equal to the sum of two squares
Some statistics and curios

This topic is a continuation from wonplate193

Statistics and curios for the ninedigital variation

In total there are 65795 ninedigitals that can be expressed as sums of two squares in 1 or more ways.
This is around 18% of the 9! possible ninedigitals. Here is the distribution list :

(*_1) 28763
(*_2) 25968
(*_3) 1464
(*_4) 7513
(*_5) 55
(*_6) 848
(*_7) 0
(*_8) 901
(*_9) 27
(*_10) 34
(*_11) 0
(*_12) 161
(*_13) 0
(*_14) 0
(*_15) 2           469738125 & 879463125
(*_16) 44
(*_17) 0
(*_18) 4           346978125, 647193825, 783961425 & 968417325
(*_19) 0
(*_20) 2           763498125 & 796843125
(*_21) 0
(*_22) 0
(*_23) 0
(*_24) 8
(*_25) 0
(*_26) 0
(*_27) 0
(*_28) 0
(*_29) 0
(*_30) 0
(*_31) 0
(*_32) 1           439817625

In total there are exactly 100 ninedigitals expressible as a sum of two squares whereby
the concatenation of its basenumbers forms a ninedigital (77 in total) or a pandigital (23 in total).

As a coincidence there are also 23 ninedigitals whereby the basenumbers A and B are the same.
They show up on the right side of the table.

One ninedigital stands out from the rest namely 317928645 because it is the
only one that has more than one solution. Beware this is a unique case!
This couple are the first two from an eightfold (*_8) solution for this ninedigital.
Note: this curio was first observed by Peter Kogel already in 2005.

317928645    =
25382 + 176492

29432 + 175862

Here is the complete list of all the hundred ninedigital solutions.
What is under construction is the list regarding the pandigitals. B.S. Rangaswamy sent me already one example
to wet your appetite. See at the bottom of the table.

1175236849  =  34952 + 127682612859437  =  137492 + 205892143752968 = 2 * 84782
2179684325  =  36542 + 128972618542937  =  136592 + 207842145897362 = 2 * 85412
3189237465  =  45362 + 129872689537412  =  109742 + 238562162973458 = 2 * 90272
4197485632  =  53762 + 129842756928314  =  149672 + 230852164275938 = 2 * 90632
5218367945  =  54692 + 137282783691245  =  185732 + 209462178945362 = 2 * 94592
6231649785  =  65282 + 137492786425193  =  159482 + 230672183974562 = 2 * 95912
7234169785  =  76592 + 132482814593672  =  158942 + 237062219367458 = 2 * 104732
8234718965  =  87932 + 125462817439625  =  137492 + 250682346581792 = 2 * 131642
9234971685  =  56792 + 142382824691537  =  103592 + 267842423579618 = 2 * 145532
10237916845  =  89732 + 125462841769325  =  170582 + 234692453968712 = 2 * 150662
11238176549  =  69452 + 137822867154293  =  169532 + 240782461593728 = 2 * 151922
12238971465  =  76592 + 134282874932516  =  174962 + 238502497638152 = 2 * 157742
13243956817  =  27842 + 153692891746325  =  137852 + 264902537198642 = 2 * 163892
14249813657  =  82592 + 134762912645873  =  164972 + 253082571963842 = 2 * 169112
15251649873  =  53672 + 149282916782345  =  185072 + 239642618534792 = 2 * 175862
16256847193  =  49682 + 152372921847653  =  160982 + 257432637459218 = 2 * 178532
17268371954  =  69752 + 148232925781634  =  143972 + 268052639174258 = 2 * 178772
18283974165  =  43592 + 162782927814653  =  157982 + 260432654279138 = 2 * 180872
19286753194  =  82952 + 147632934687125  =  143702 + 269852654713298 = 2 * 180932
20312897645  =  89342 + 152672943725186  =  187052 + 243692765421938 = 2 * 195632
21317928645  =  25382 + 176492 =  29432 + 175862948571236  =  136802 + 275942913524768 = 2 * 213722
22326785149  =  49652 + 173822972354861  =  174692 + 258302943256178 = 2 * 217172
23328459617  =  54362 + 172892973416285  =  174062 + 258932958431762 = 2 * 218912
24341978265  =  64592 + 173282
25345172689  =  87452 + 163922
26346297185  =  79532 + 168242
27362794185  =  54962 + 182372
28365984721  =  24362 + 189752
29368529417  =  53762 + 184292
30369471825  =  59642 + 182732
31374921865  =  83522 + 174692
32378129645  =  83492 + 175622
33385267914  =  23672 + 194852
34413629578  =  64532 + 192872
35435869712  =  78242 + 193562
36436521978  =  96272 + 185432
37478192653  =  46982 + 213572
38481379265  =  48572 + 213962
39489731265  =  56972 + 213842
40497163825  =  48962 + 217532
41497231865  =  59762 + 214832
42514926873  =  57632 + 219482
43523687194  =  63452 + 219872
44523861794  =  78632 + 214952
45532978641  =  87962 + 213452
46592876413  =  61982 + 235472
47598314762  =  64712 + 235892
48613259874  =  18752 + 246932
49613478925  =  74582 + 236192
50614829357  =  78692 + 235142
51619423785  =  15962 + 248372
52631548297  =  87962 + 235412
53635127849  =  91682 + 234752
54639218457  =  73562 + 241892
55648912537  =  38642 + 251792
56651429378  =  68132 + 245972
57674921853  =  41972 + 256382
58682143597  =  61892 + 253742
59694725138  =  96872 + 245132
60712839546  =  97352 + 248612
61726389145  =  89762 + 254132
62726439185  =  71642 + 259832
63729563481  =  39842 + 267152
64758394621  =  43952 + 271862
65789631245  =  97412 + 263582
66812596473  =  56132 + 279482
67817453962  =  65492 + 278312
68823415697  =  35162 + 284792
69825697314  =  39152 + 284672
70839147625  =  91562 + 274832
71846352197  =  73592 + 281462
72865972341  =  38462 + 291752
73872156394  =  16352 + 294872
74914367285  =  64712 + 295382
75931427586  =  68312 + 297452
76934816725  =  74312 + 296582
77951246738  =  85172 + 296432

Another ninedigital that stands out from the rest is 934167285 because it is the only
one that can be written as a sum of two squares in two different ways such that both
their basenumbers forms a ninedigital when multiplied together.
A nice unique case!

934167285    =
  95132 + 290462 and   9513 * 29046 = 276314598

206012 + 225782 and 20601 * 22578 = 465129378

In total there are 219 ninedigitals expressible in this way.
The smallest is 248635917 = 106142 + 116612 and 10614 * 11661 = 123769854
The largest is   987431562 = 215192 + 228992 and 21519 * 22899 = 492763581

Statistics and curios for the pandigital variation

In total there are 568801 pandigitals that can be expressed as sums of two squares in 1 or more ways.
This is around 17,416 % of the 9*9! possible pandigitals. Here is the distribution list :

(*_1)  (23112)1 + (23193)2 + (23072)3 + (22132)4 + (24904)5 + (21085)6 + (22492)7 + (21296)8 + (20600)9 ( 201886 )tot
(*_2)  (26329)1 + (26858)2 + (26881)3 + (25208)4 + (25865)5 + (24452)6 + (26628)7 + (24705)8 + (24742)9 ( 231668 )tot
(*_3)  (1840)1 + (919)2 + (1592)3 + (1372)4 + (511)5 + (1434)6 + (1526)7 + (1324)8 + (1471)9 ( 11989 )tot
(*_4)  (10254)1 + (10559)2 + (11129)3 + (10170)4 + (8929)5 + (9983)6 + (11204)7 + (10259)8 + (10737)9 ( 93224 )tot
(*_5)  (60)1 + (0)2 + (110)3 + (116)4 + (5)5 + (57)6 + (105)7 + (96)8 + (107)9 ( 656 )tot
(*_6)  (1408)1 + (740)2 + (1164)3 + (1127)4 + (377)5 + (1185)6 + (1257)7 + (1081)8 + (1156)9 ( 9495 )tot
(*_7)  (5)1 + (0)2 + (7)3 + (7)4 + (0)5 + (1)6 + (5)7 + (5)8 + (4)9 ( 34 )tot
(*_8)  (1601)1 + (1606)2 + (1864)3 + (1748)4 + (1197)5 + (1739)6 + (2088)7 + (1915)8 + (1992)9 ( 15750 )tot
(*_9)  (32)1 + (19)2 + (25)3 + (17)4 + (5)5 + (23)6 + (30)7 + (29)8 + (25)9 ( 205 )tot
(*_10)  (30)1 + (2)2 + (42)3 + (90)4 + (0)5 + (40)6 + (82)7 + (53)8 + (72)9 ( 411 )tot
(*_11)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_12)  (251)1 + (133)2 + (281)3 + (266)4 + (73)5 + (270)6 + (297)7 + (290)8 + (294)9 ( 2155 )tot
(*_13)  (1)1 + (0)2 + (0)3 + (1)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 2 )tot
(*_14)  (0)1 + (0)2 + (1)3 + (4)4 + (0)5 + (4)6 + (3)7 + (1)8 + (7)9 ( 20 )tot
(*_15)  (2)1 + (0)2 + (4)3 + (6)4 + (0)5 + (0)6 + (5)7 + (1)8 + (2)9 ( 20 )tot
(*_16)  (88)1 + (71)2 + (111)3 + (114)4 + (49)5 + (128)6 + (142)7 + (156)8 + (153)9 ( 1012 )tot
(*_17)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_18)  (9)1 + (3)2 + (11)3 + (14)4 + (2)5 + (7)6 + (9)7 + (14)8 + (10)9 ( 79 )tot
(*_19)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_20)  (1)1 + (0)2 + (4)3 + (6)4 + (0)5 + (7)6 + (17)7 + (3)8 + (8)9 ( 46 )tot
(*_21)  (1)1 + (0)2 + (1)3 + (0)4 + (0)5 + (0)6 + (1)7 + (0)8 + (0)9 ( 3 )tot
(*_22)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_23)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_24)  (11)1 + (9)2 + (14)3 + (12)4 + (3)5 + (12)6 + (23)7 + (8)8 + (22)9 ( 114 )tot
(*_25)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_26)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_27)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_28)  (0)1 + (0)2 + (0)3 + (1)4 + (0)5 + (0)6 + (0)7 + (1)8 + (1)9 ( 3 )tot
(*_29)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_30)  (0)1 + (0)2 + (2)3 + (2)4 + (0)5 + (0)6 + (1)7 + (1)8 + (0)9 ( 6 )tot
(*_31)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_32)  (2)1 + (0)2 + (3)3 + (1)4 + (0)5 + (3)6 + (2)7 + (2)8 + (3)9 ( 16 )tot
(*_33)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_34)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_35)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_36)  (0)1 + (0)2 + (1)3 + (0)4 + (0)5 + (1)6 + (1)7 + (0)8 + (2)9 ( 5 )tot       3049186725, 6137904825, 7261938450, 9132768450 & 9702436185
(*_37)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_38)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_39)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_40)  (0)1 + (0)2 + (0)3 + (1)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 1 )tot       4398176250
(*_41)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_42)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_43)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_44)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_45)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_46)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_47)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (0)7 + (0)8 + (0)9 ( 0 )tot
(*_48)  (0)1 + (0)2 + (0)3 + (0)4 + (0)5 + (0)6 + (1)7 + (0)8 + (0)9 ( 1 )tot       7316984025

(*_subt)  (65037)1 + (64112)2 + (66319)3 + (62415)4 + (61920)5 + (60431)6 + (65919)7 + (61240)8 + (61408)9 ( 568801 )total

11023458976  =  194762 + 253802 11024397685  =  57692 + 314822
21024537896  =  193862 + 254702 21063789245  =  78422 + 316592
31024736985  =  165392 + 274082 31073982645  =  89462 + 315272
41032768549  =  146702 + 285932 41074893265  =  15692 + 327482
51038249657  =  185042 + 263792 51236785940  =  51962 + 347822
61038259476  =  198602 + 253742 61237694085  =  56822 + 347192
71058267349  =  184502 + 267932 71258047369  =  67952 + 348122
81063275498  =  159032 + 284672 81270365489  =  81752 + 346922
91073982645  =  198542 + 260732 91294037685  =  92582 + 347612
101075348296  =  145862 + 293702 101324958760  =  71942 + 356822
11°  =  ° + ° 11°  =  ° + °
12°  =  ° + ° 12°  =  ° + °

One lovely pandigital already popped up on my screen 1073982645
It combines in an elegant way the two numberformats i.e. ninedigital and pandigital !
This couple are the middle two from a fourfold (*_4) solution for this pandigital.

1073982645    =
89462 + 315272

198542 + 260732

Then three more pandigitals with double solutions popped up later on !
They are fully pandigital solutions throughout. Enjoy them!

7095281346    =
207452 + 816392

398612 + 742052

7125094386    =
312692 + 784052

497312 + 682052

7465102389    =
369422 + 781052

469832 + 725102

Two pandigitals that stand out from the rest are 5921803476 and 8097452136 because
they are the only ones that can be written as a sum of two squares such that both their
basenumbers form a pandigital when concatenated as well as when multiplied together.
A nice couplet !

5921803476   =   357902 + 681242 and 35790 * 68124 = 2438157960

8097452136   =   251702 + 863942 and 25170 * 86394 = 2174536980

While tracing for long(er) chains of pandigitals I stumbled across the following unique and
unexpectedly double expression. A thing of beauty !
Note that A and B are in descending order here. I didn't find a case whereby A and B are ascending.

 7983056241   =    75129 2 +  48360 2
and the concatenation of A | B gives us
 7512948360   =    75306 2 +  42918 2
a similar all_pandigital expression !

Can you find longer chains of pandigital expressions using perhaps other operations than concatenation ?

More subcategories

All the pandigitals (41) equal to 2 x A2 are A =
22887, 23124, 24957, 25941, 26409, 26733, 27276, 29685, 31389, 35367,
39036, 39147, 39432, 39702, 40293, 41997, 42843, 43059, 44922, 45258,
45624, 46464, 49059, 50889, 53568, 54354, 57321, 59268, 59727, 60984,
61098, 61611, 61866, 62634, 65436, 68823, 68982, 69087, 69696, 69732,
69798.
Note that two of them (see underlined) are palindromic !


All the pandigitals (46) equal to (A)2 + (AReversed)2 are A (smallest) =
10716, 12804, 14496, 14967, 16053, 18126, 18528, 19317, 20493, 21423, 21792,
22839, 23205, 23286, 23544, 24267, 26058, 27324, 28557, 28563, 30597, 32325,
32838, 33105, 37824, 41676, 41718, 41736, 42378, 43497, 43725, 45018, 46464,
47217, 49245, 49305, 51327, 52866, 53436, 54456, 55296, 56247, 60927, 63666,
67137, 69696.
Note that the same two palindromes appear again !
The most beautiful one however seems to me the next one
8493716052  =  636662 + 666362
When the number of the beast gets involved...

There are 2187 pandigitals that can be expressed as (A)2 + (BAnagram of A)2
The reversals of above paragraph are evidently included in this total.
0001 1023849765  =  223862 + 228632  smallest
0002 1027935648  =  223082 + 230282  second
0003 1027968345  =  176282 + 267812  third
- - -
0666 3921846057  =  107162 + 617012  indexed by the number of the beast yields a reversal
1666 7914563208  =  260582 + 850622  indexed by a near number of the beast yields also a reversal
- - -
2185 9864025713  =  339722 + 933272  third last
2186 9872350146  =  154892 + 981452  penultimate
2187 9876135240  =  657422 + 745262  largest

The following is special as the five lowest and five highest digits of the pandigital are nicely separated
1082 56789_04132  =  507542 + 557042  curio

There are four pandigitals whose second half is also an anagram of A or B
0371 26904_57813  =  358172 + 375182  curio
1062 54903_21768  =  187622 + 716822  curio
1175 60294_17538  =  518372 + 578132  curio
1865 85764_92130  =  209312 + 902132  curio

These two solutions are also noteworthy
0957 5047168932  =  246662 + 666242  curio with number of the beast
1731 8140532769  =  158882 + 888152  curio not with number of the beast but same structure


  Topic 5.11   [ April 27, 2014 ]
Order out of chaos using the ninedigits

Numberphile has released a video file that relates to the ninedigits.
Near the end of the video the zero comes in as well!
https://www.youtube.com/watch?v=CwIAfkuXc5A&feature=em-uploademail

And here is a video explaining the mysterious math from above
which is in fact the Erdös-Szekeres theorem.
https://www.youtube.com/watch?v=LBPj8E1JKaQ&feature=em-uploademail


  Topic 5.10   [ December 15, 2013 ]
Nearing the end of the year 2013

There is a unique ninedigital number that when divided by the year 2013 delivers a palindrome.
Ain't that nice!

127495368 = 2013 * 63336

Who likes to do this exercise for the coming years 2014, 2015, ...
And what about the pandigital version of this topic ?


  Topic 5.9   [ January 1, 2013 ]
The ninedigital primes version of WONplate 181

The following ninedigital numbers are all (probable (3-PRP!)) prime.
Note that the 5-digit displacements are also prime !
1325! + 87649
1462! + 59387
1475! + 96823
1547! + 68239
1685! + 29437
2351! + 74869
2354! + 86197
2468! + 75193
2486! + 15973
2615! + 84793
2876! + 15493
3218! + 45697
3845! + 76129
4618! + 32579
4895! + 76213
4981! + 62753
8153! + 72649
8573! + 41269
9625! + 34781
9824! + 61357
1438! - 57269
1478! - 52369
1486! - 59273
1576! - 28493
1849! - 67523
2471! - 63589
2536! - 84179
3469! - 28751
4285! - 71963
4562! - 93871
4691! - 52837
5239! - 16487
5417! - 86923
5462! - 98317
5743! - 68219
5749! - 26183
7948! - 23561
7982! - 45361
8123! - 47569
9836! - 25147


  Topic 5.8   [ December 30, 2010 ]
From a posting to [SeqFan]
by Eric Angelini

"As an afterthought, here's one I like (because of
the symmetry in the operations) that was appropriate
for the countdown on Friday night { can you find out the exact year? }:

10 + 9 * 8 * 7 / 6 * 5 * 4 + 321

Happy New Year! "


  Topic 5.7   [ April 2008 ]
Fractions using the same digits as their decimal representation
A webpage by Christian Boyer

An example using all the nine digits from
http://www.christianboyer.com/fractiondigits/ is

124983 / 576 = 216.984375

The above link came from a reply in the SeqFan mailing list where
Alexander R. Povolotsky's topic was about approximating Pi
using just nine- and pandigitals. Here is his *best* combination !

689725314(0) / 219546387(0) = 3.141592642...

Alexander R. Povolotsky [ October 8, 2022 ] writes

Since then the better approximations were found per
Using each number (1-9 EXACTLY ONCE) can you make 2 distinct 9 digits numbers,
so the quotient of the two numbers is as close to Pi as possible?

429751836 / 136794258 = 3.14159265369164852899... (pi + 1.01855e-10)

467895213 / 148935672 = 3.14159265350479621759... (pi - 8.49969e-11)

                      Pi = 3.1415926535897932384626433832795028842


I conjecture that the higher the pandigital number base then the better and better Pi approximations can be found and that in the base where n=infinity the actual Pi number could be achieved... Someone with good computer programming skills perhaps could check whether my conjecture is true or not.


  Topic 5.6   [ March 31, 2008 ]
Blending palindromes with nine- & pandigitals using multiplication by 9
by B.S. Rangaswamy

This topic is a continuation from wonplate 173.

Pandigitals (Kmil = 1000 million) total = 559

Palindrome	Pandigital
P9 P9 * 9
Palindrome Ninedigital
P8 P8 * 9     
Palindrome	Pandigital
P9 P9 * 9
Palindrome Ninedigital
P8 P8 * 9     
Palindrome	Pandigital
P9 P9 * 9
Palindrome Ninedigital
P8 P8 * 9     
Palindrome	Pandigital
P9 P9 * 9
Palindrome Ninedigital
P8 P8 * 9     
1 Kmil  # 81
2 Kmil  # 46

134050431 1206453879 134060431 1206543879 136717631 1230458679 136727631 1230548679 137606731 1238460579 137626731 1238640579 137818731 1240368579 137848731 1240638579 138929831 1250368479 138959831 1250638479 139828931 1258460379 139848931 1258640379 143050341 1287453069 143060341 1287543069 145030541 1305274869 145080541 1305724869 145272541 1307452869 145282541 1307542869 146717641 1320458769 146727641 1320548769 148919841 1340278569 148969841 1340728569 152676251 1374086259 152898251 1376084259 154030451 1386274059 154080451 1386724059 156252651 1406273859 156303651 1406732859 156373651 1407362859 157818751 1420368759 157848751 1420638759 158707851 1428370659 158747851 1428730659 158919851 1430278659 158969851 1430728659 167030761 1503276849 167080761 1503726849 167363761 1506273849 167414761 1506732849 167484761 1507362849 168929861 1520368749 168959861 1520638749 169818961 1528370649 169858961 1528730649 174898471 1574086239 176030671 1584276039 176080671 1584726039 176252671 1586274039 178050871 1602457839 178060871 1602547839 178252871 1604275839 178363871 1605274839 182565281 1643087529 183676381 1653087429 187050781 1683457029 187060781 1683547029 187303781 1685734029 187494781 1687453029 189272981 1703456829 189282981 1703546829 189373981 1704365829 189484981 1705364829 189515981 1705643829 215030512 1935274608 215080512 1935724608 215272512 1937452608 215282512 1937542608 216252612 1946273508 216303612 1946732508 217030712 1953276408 217080712 1953726408 217414712 1956732408 217484712 1957362408 218050812 1962457308 218060812 1962547308 218363812 1965274308 219272912 1973456208 219282912 1973546208 219373912 1974365208 219484912 1975364208 219515912 1975643208
224050422 2016453798 224060422 2016543798 225717522 2031457698 225727522 2031547698 226404622 2037641598 226818622 2041367598 226848622 2041637598 227959722 2051637498 240545042 2164905378 240656042 2165904378 255717552 2301457968 255727552 2301547968 264010462 2376094158 264404462 2379640158 266818662 2401367958 266848662 2401637958 268121862 2413096758 268454862 2416093758 277929772 2501367948 277959772 2501637948 279232972 2513096748 279565972 2516093748 286010682 2574096138 286232682 2576094138 286606682 2579460138 286626682 2579640138 315010513 2835094617 315494513 [Obs] 2839450617 315595513 2840359617 315989513 2843905617 316595613 2849360517 317010713 2853096417 318232813 2864095317 318343813 2865094317 326020623 2934185607 326090623 2934815607 326131623 2935184607 326494623 2938451607 327020723 2943186507 327090723 2943816507 327353723 2946183507 327595723 2948361507 328464823 2956183407 329050923 2961458307 329060923 2961548307 329464923 2965184307
3 Kmil  # 74
4 Kmil  # 90

336020633 3024185697 336090633 3024815697 336131633 3025184697 336494633 3028451697 341050143 3069451287 341060143 3069541287 344717443 3102456987 344727443 3102546987 347121743 3124095687 347232743 3125094687 360121063 3241089567 360212063 3241908567 360989063 3248901567 361202163 3250819467 361232163 3251089467 361323163 3251908467 364505463 3280549167 364989463 3284905167 365101563 3285914067 365494563 3289451067 365717563 3291458067 365727563 3291548067 378101873 3402916857 378545873 3406912857 389212983 3502916847 389656983 3506912847 412050214 3708451926 412060214 3708541926 412676214 3714085926 412787214 3715084926 413272314 3719450826 413282314 3719540826 416454614 3748091526 416545614 3748910526 416575614 3749180526 417565714 3758091426 417656714 3758910426 417686714 3759180426 420545024 3784905216 420656024 3785904216 422050224 3798452016 422060224 3798542016 423050324 3807452916 423060324 3807542916 425010524 3825094716 425494524 3829450716 427454724 3847092516 427696724 3849270516 428010824 3852097416 428565824 3857092416 431050134 3879451206 431060134 3879541206 432505234 3892547106 432747234 3894725106 432808234 3895274106 432858234 3895724106 435030534 3915274806 435080534 3915724806 435272534 3917452806 435282534 3917542806 435717534 3921457806 435727534 3921547806 436020634 3924185706 436090634 3924815706 436131634 3925184706 436494634 3928451706 438020834 3942187506 438090834 3942817506 438575834 3947182506 438696834 3948271506 439030934 3951278406 439080934 3951728406 439131934 3952187406 439686934 3957182406
445919544 4013275896 446202644 4015823796 448020844 4032187596 448090844 4032817596 448575844 4037182596 448646844 4037821596 448696844 4038271596 451030154 4059271386 451080154 4059721386 452373254 4071359286 452393254 4071539286 455919554 4103275986 455969554 4103725986 459121954 4132097586 459676954 4137092586 462010264 4158092376 462202264 4159820376 467101764 4203915876 480212084 4321908756 480989084 4328901756 485676584 4371089256 485767584 4371908256 486454684 4378092156 486646684 4379820156 486989684 4382907156 487545784 4387912056 487919784 4391278056 487969784 4391728056 512030215 4608271935 512080215 4608721935 512303215 4610728935 513010315 4617092835 513252315 4619270835 513353315 4620179835 513545315 4621907835 514232415 4628091735 514323415 4628910735 514353415 4629180735 519010915 4671098235 519787915 4678091235 519878915 4678910235 521454125 4693087125 521898125 4697083125 523181325 4708631925 523404325 4710638925 523676325 4713086925 524010425 4716093825 524373425 4719360825 526454625 4738091625 526545625 4738910625 526575625 4739180625 529010925 4761098325 529787925 4768091325 529878925 4768910325 531545135 4783906215 531878135 4786903215 533151335 4798362015 533181335 4798632015 534030435 4806273915 534080435 4806723915 534151435 4807362915 534181435 4807632915 536232635 4826093715 536595635 4829360715 536696635 4830269715 536989635 4832906715 537454735 4837092615 537696735 4839270615 541030145 4869271305 541080145 4869721305 541252145 4871269305 541292145 4871629305 542151245 4879361205 542181245 4879631205 543626345 4892637105 543747345 4893726105 546252645 4916273805 546303645 4916732805 546373645 4917362805 546818645 4921367805 546848645 4921637805 547020745 4923186705 547090745 4923816705 547353745 4926183705 547595745 4928361705 548020845 4932187605 548090845 4932817605 548575845 4937182605 548646845 4937821605 548696845 4938271605
5 Kmil  # 64
6 Kmil  # 78

623020326 5607182934 623090326 5607812934 623141326 5608271934 623191326 5608721934 623414326 5610728934 623565326 5612087934 624121426 5617092834 624363426 5619270834 624464426 5620179834 624656426 5621907834 625343526 5628091734 625434526 5628910734 625464526 5629180734 630121036 5671089324 630212036 5671908324 630989036 5678901324 632565236 5693087124 633020336 5697183024 633090336 5697813024 634020436 5706183924 634090436 5706813924 634262436 5708361924 634292436 5708631924 634515436 5710638924 634787436 5713086924 635121536 5716093824 635484536 5719360824 637565736 5738091624 637656736 5738910624 637686736 5739180624 642656246 5783906214 642989246 5786903214 644262446 5798362014 644292446 5798632014 645141546 5806273914 645191546 5806723914 645262546 5807362914 645292546 5807632914 647010746 5823096714 647343746 5826093714 648010846 5832097614 648565846 5837092614 652141256 5869271304 652191256 5869721304 652363256 5871269304 653262356 5879361204 653292356 5879631204 654707456 5892367104 654737456 5892637104 654808456 5893276104 654858456 5893726104 657030756 5913276804 657080756 5913726804 657363756 5916273804 657414756 5916732804 657484756 5917362804 657929756 5921367804 657959756 5921637804 658131856 5923186704 658464856 5926183704 659030956 5931278604 659080956 5931728604 659131956 5932187604 659686956 5937182604
668202866 6013825794 668424866 6015823794 671030176 6039271584 671080176 6039721584 673101376 6057912384 673252376 6059271384 674595476 6071359284 682010286 6138092574 682202286 6139820574 684232486 6158092374 684424486 6159820374 689323986 6203915874 689545986 6205913874 712030217 6408271953 712080217 6408721953 712303217 6410728953 712454217 6412087953 713010317 6417092853 713252317 6419270853 713353317 6420179853 713545317 6421907853 714232417 6428091753 714323417 6428910753 714353417 6429180753 719010917 6471098253 719878917 6478910253 723020327 6507182943 723090327 6507812943 723141327 6508271943 723191327 6508721943 723414327 6510728943 723565327 6512087943 724121427 6517092843 724363427 6519270843 724464427 6520179843 724656427 6521907843 725343527 6528091743 725434527 6528910743 725464527 6529180743 745020547 6705184923 745090547 6705814923 745383547 6708451923 745393547 6708541923 745606547 6710458923 745616547 6710548923 746010647 6714095823 746121647 6715094823 749010947 6741098523 749787947 6748091523 749878947 6748910523 753878357 6784905213 753989357 6785904213 755383557 6798452013 755393557 6798542013 756030657 6804275913 756080657 6804725913 756141657 6805274913 756191657 6805724913 756383657 6807452913 756393657 6807542913 758232857 6824095713 758343857 6825094713 761030167 6849271503 761080167 6849721503 762141267 6859271403 762191267 6859721403 764383467 6879451203 764393467 6879541203 765828567 6892457103 765838567 6892547103 768050867 6912457803 768060867 6912547803 768252867 6914275803 768363867 6915274803 769050967 6921458703 769060967 6921548703 769353967 6924185703 769464967 6925184703
7 Kmil  # 69
8 Kmil  # 57

781050187 7029451683 781060187 7029541683 783474387 7051269483 785101587 7065914283 785494587 7069451283 812050218 7308451962 812060218 7308541962 812676218 7314085962 812787218 7315084962 816454618 7348091562 816575618 7349180562 817565718 7358091462 817656718 7358910462 821565128 7394086152 821787128 7396084152 823151328 7408361952 823181328 7408631952 824010428 7416093852 824373428 7419360852 826454628 7438091652 826545628 7438910652 826575628 7439180652 829010928 7461098352 829787928 7468091352 829878928 7468910352 834020438 7506183942 834090438 7506813942 834262438 7508361942 834292438 7508631942 834515438 7510638942 834787438 7513086942 835121538 7516093842 835484538 7519360842 837565738 7538091642 837656738 7538910642 837686738 7539180642 840121048 7561089432 840212048 7561908432 840989048 7568901432 843787348 7594086132 844020448 7596184032 844090448 7596814032 845020548 7605184932 845090548 7605814932 845383548 7608451932 845393548 7608541932 845606548 7610458932 845616548 7610548932 846010648 7614095832 846121648 7615094832 849010948 7641098532 849787948 7648091532 849878948 7648910532 867050768 7803456912 867060768 7803546912 867151768 7804365912 867181768 7804635912 867383768 7806453912 867393768 7806543912 871050178 7839451602 871060178 7839541602 871262178 7841359602 873262378 7859361402 873292378 7859631402 874383478 7869451302 874393478 7869541302 879272978 7913456802 879282978 7913546802 879515978 7915643802
915010519 8235094671 915595519 8240359671 915989519 8243905671 916595619 8249360571 917010719 8253096471 917343719 8256093471 918232819 8264095371 918343819 8265094371 923050329 8307452961 923060329 8307542961 925010529 8325094761 925494529 8329450761 927454729 8347092561 927696729 8349270561 928010829 8352097461 928565829 8357092461 934030439 8406273951 934080439 8406723951 934151439 8407362951 934181439 8407632951 936232639 8426093751 936595639 8429360751 936696639 8430269751 936989639 8432906751 937454739 8437092651 937696739 8439270651 945141549 8506273941 945191549 8506723941 945262549 8507362941 945292549 8507632941 947010749 8523096741 947343749 8526093741 948010849 8532097641 948565849 8537092641 951434159 8562907431 951989159 8567902431 955141559 8596274031 955191559 8596724031 956030659 8604275931 956080659 8604725931 956141659 8605274931 956383659 8607452931 956393659 8607542931 958232859 8624095731 958343859 8625094731 963878369 8674905321 963989369 8675904321 966383669 8697453021 966393669 8697543021 967050769 8703456921 967060769 8703546921 967151769 8704365921 967181769 8704635921 967262769 8705364921 967292769 8705634921 967383769 8706453921 967393769 8706543921

[ June 14, 2014 ]
Observation 1 by Heine Wanderlust (email)

315494513 (a prime by the way) * 9 = the pandigital 2839450617.
But multiply by 18 and you get a pandigital with a nice permutation: 5678901234.
Also in both these pandigitals the differences between each
successive digit creates a palindrome: 656515656, 111191111

[ September 15, 2014 ]
Observation 2 by Heine Wanderlust (email)

Following on from my June 14 2014 post, I've found another Rangaswamy palindrome
yielding a pandigital when multiplied by 18 as well as by 9 :
548696845 * 18 = 9876543210
548696845 * 9 = 4938271605
This type of result, whereby the "countdown" pandigital in a base b can be divided by 2(b–1)
to get a palindrome, occurs in at least two other number bases:
base 8 where 76543210 / 16 = 4364634, and in base 6 where 543210 / 14 = 32423.


  Topic 5.5   [ January 22, 2006 ]
Pandigital... throughout

A unique construction : start with multiplying these two
5-digit factors which taken together form a pandigital number :

54981 * 62037

equals

3410856297

as you can see the result of the multiplication is pandigital as well.
And now let us take the square of this pandigital 34108562972

11633940678784552209

... an order_2 pandigital emerges since all the digits from 0 to 9
occur exactly two times !

Discover more of these gems at wonplate 167 !


  Topic 5.4   [ October 26, 2005 ]
From Palindromic Squares to Pandigitals

264 is a very interesting number since it is the 12th basenumber of a palindromic square.
The square itself is this nice palindrome 69696.
Note the presence of the number of the Beast ! 69696 .

Did you know that when we power up 264 with two exponents and add them up
that we arrive at a pandigital number... in two different ways !

2643 + 2644 = 4875932160
2644 + 2644 = 9715064832

The second equation can be written as a palindromic expression itself using
69696 squared and then doubled
 2 * 69696 ^ 2 
(There exists another 5-digit palindrome with this property. Can you discover it ?)

One can play along with other than our 264 number namely 2016.
I found the next equation of some interest.

20162 + 20163 = 8197604352

Or the next one with two consecutive integers

233 * 244 = 4036718592

Is there more to discover ?
Yes, see Claudio Meller's contribution at WONplate 183


  Topic 5.3   [ October 2005 ]
Figure this out : 4-1-4

It is a four digit number multiplied by a one digit number to equal another four digit number
    and only the nine digits from 1 to 9 can be used once ?

Two solutions to this 9-digit problem can be found.

1738 * 4 = 6952
1963 * 4 = 7852


  Topic 5.2   [ October 2006 ]
Figure this out : 4-1-5

It is a four digit number multiplied by a one digit number to equal a five digit number
    and only the ten digits from 0 to 9 can be used once ?

Thirteen solutions to this pandigital problem can be found.

3094 * 7 = 21658
3907 * 4 = 15628
4093 * 7 = 28651
5694 * 3 = 17082
5817 * 6 = 34902
6819 * 3 = 20457
6918 * 3 = 20754
7039 * 4 = 28156
8169 * 3 = 24507
9127 * 4 = 36508
9168 * 3 = 27504
9304 * 7 = 65128
9403 * 7 = 65821


  Topic 5.1   [ September 4, 2005 ]
Generating Pandigitals from Palindromes through Fibonacci iteration
by B.S. Rangaswamy

" I got inspired by your presentation of the derivation of 68 ninedigit numbers (with all numerals from 1 to 9)
from palindromes through Fibonacci iteration. I have developed it further by arriving at a dozen 10 digit numbers
(with all numerals from 0 to 9) from 2 to 10 digit palindromes. Some of the 10 digit numbers arrived at
together with their mother palindromes are :

75257 9135748206
799997 2067193845
8055508 4913860257
42944924 2361970854

It is interesting to note that 6300036 leads to pandigital 1467908532, which matches identically
with each stage of iteration of 630036 to 146798532. I came across another curio as well :

630036   146798532
6300036 1467908532

9530359   123894675
95300359 1238904675

Following closely resembling palindromes lead to closely matching pandigitals :

592070295 2960351478
952070259 4760351298

This task began at my son's residence in Florida US and was completed at Bangalore India.
I was thrilled at the discovery of each of these pandigitals.

I am grateful to you for your encouragement and guidance in this venture.
B.S.Rangaswamy "



In total there are 117 palindromes that yield pandigital numbers
The smallest one is 75257 and the largest one is 4376006734 ¬

1. Typical generation of pandigitals (10 digits) from palindromes through Fibonacci iteration
1
75257
75258
150515
225773
376288
602061
978349
1580410
2558759
4139169
6697928
10837097
17535025
28372122
45907147
74279269
120186416
194465685
314652101
509117786
823769887
1332887673
2156657560
3489545233
5646202793
9135748026
1
799997
799998
1599995
2399993
3999988
6399981
10399969
16799950
27199919
43999869
71199788
115199657
186399445
301599102
487998547
789597649
1277596196
2067193845
1
6431346
6431347
12862693
19294040
32156733
51450773
83607506
135058279
218665785
353724064
572389849
926113913
1498503762
1
408676804
408676805
817353609
1226030414
2043384023
3269414437
5312798460
1
561262165
561262166
1122524331
1683786497
2806310828
4490097325
7296408153
1
760474067
760474068
1520948135
2281422203
3802370338
6083792541
1
93811839
93811840
187623679
281435519
469059198
750494717
1219553915
1970048632
3189602547
1
1206776021
1206776022
2413552043
3620328065
6033880108
9654208173
1
3067447603
3067447604
6134895207
1
4068228604
4068228605
8136457209
117
in total

2. Above are 117 palindromes in ascending order, leading to pandigitals (10 digits)
75257
799997
2877782
4364634
4689864
5068605
6300036
6431346
6881886
8055508
15844851
42944924
54777745
93811839
95300359
146353641
177858771
185121581
185222581
187333781
207313702
238242832
245363542
295747592
310717013
314878413
324151423
348616843
350878053
354010453
358070853
370464073
370797073
390474093
394070493
395313593
395727593
407525704
408676804
460363064
473303374
475686574
506939605
527121725
527454725
530878035
536454635
547252745
561262165
590272095
592070295
629171926
642676246
655191556
695525596
740838047
760474067
782484287
841303148
914272419
950272059
952070259
1089229801
1097337901
1098228901
1206776021
1289009821
1295335921
1298008921
1395225931
1397007931
2068448602
2069339602
2158448512
2159339512
2359119532
2365445632
2369009632
2456336542
2458118542
2465335642
2468008642
3067447603
3069229603
3076446703
3079119703
3157447513
3159229513
3175445713
3179009713
3256446523
3259119523
3265445623
3269009623
3456226543
3457117543
3465225643
3467007643
3475115743
3476006743
4067337604
4068228604
4076336704
4078118704
4086226804
4087117804
4158228514
4175335714
4178008714
4185225814
4187007814
4258118524
4268008624
4286006824
4365225634
4367007634
4376006734

3. Queen and King combinations of
palindromes vs. pandigitals
 PalindromeNinedigital PalindromePandigital 
 QUEEN KING 
  630036
9530359
128909821
129808921
139707931
236909632
246808642
317909713
326909623
346707643
347606743
417808714
418707814
426808624
428606824
436707634
437606734
146798532
123894675
257819643
259617843
279415863
473819265
493617285
635819427
653819247
693415287
695213487
835617429
837415629
853617249
857213649
873415269
875213469
  6300036
95300359
1289009821
1298008921
1397007931
2369009632
2468008642
3179009713
3269009623
3467007643
3476006743
4178008714
4187007814
4268008624
4286006824
4367007634
4376006734
1467908532
1238904675
2578019643
2596017843
2794015863
4738019265
4936017285
6358019427
6538019247
6934015287
6952013487
8356017429
8374015629
8536017249
8572013649
8734015269
8752013469
 

4. Scintillating Grid
one pair each of digits 0, 3, 4, 6 & 7
 PalindromePandigital 
  0346707643
0347606743
0436707634
0437606734
3067447603
3076446703
3467007643
3476006743
4067337604
4076336704
4367007634
4376006734
0693415287
0695213487
0873415269
0875213469
6134895207
6152893407
6934015287
6952013487
8134675209
8152673409
8734015269
8752013469
 


For reference goals and easy searching I list here all the nine- & pandigitals implicitly displayed in these topics.

Topic 5.12 → 349512768, 365412897, 453612987, 537612984, 546913728, 652813749, 765913248, 879312546, 567914238, 897312546, 694513782, 765913428, 278415369, 825913476, 536714928, 496815237, 697514823, 435916278, 829514763, 893415267, 253817649, 294317586, 496517382, 543617289, 645917328, 874516392, 795316824, 549618237, 243618975, 537618429, 596418273, 835217469, 834917562, 236719485, 645319287, 782419356, 962718543, 469821357, 485721396, 569721384, 489621753, 597621483, 576321948, 634521987, 786321495, 879621345, 619823547, 647123589, 187524693, 745823619, 786923514, 159624837, 879623541, 916823475, 735624189, 386425179, 681324597, 419725638, 618925374, 968724513, 973524861, 897625413, 716425983, 398426715, 439527186, 974126358, 561327948, 654927831, 351628479, 391528467, 915627483, 735928146, 384629175, 163529487, 647129538, 683129745, 743129658, 851729643
1374920589, 1365920784, 1097423856, 1496723085, 1857320946, 1594823067, 1589423706, 1374925068, 1035926784, 1705823469, 1695324078, 1749623850, 1378526490, 1649725308, 1850723964, 1609825743, 1439726805, 1579826043, 1437026985, 1870524369, 1368027594, 1746925830, 1740625893
1947625380, 1938625470, 1653927408, 1467028593, 1850426379, 1986025374, 1845026793, 1590328467, 1985426073, 1458629370
576931482, 784231659, 894631527, 156932748, 519634782, 568234719, 679534812, 817534692, 925834761, 719435682
2074581639, 3986174205, 3126978405, 4973168205, 3694278105, 4698372510
3579068124, 3579068124, 2517086394, 2517086394
7512948360, 7530642918
1047629538, 1069438752, 1245703698, 1345870962, 1394870562, 1429306578, 1487960352, 1762398450, 1970538642, 2501649378, 3047618592, 3064975218, 3109765248, 3152497608, 3247051698, 3527496018, 3671045298, 3708154962, 4035972168, 4096573128, 4163098752, 4317806592, 4813570962, 5179380642, 5739061248, 5908714632, 6571394082, 7025391648, 7134629058, 7438096512, 7465931208, 7591830642, 7654803912, 7846035912, 8563740192, 9473210658, 9517032648, 9546027138, 9715064832, 9725103648, 9743521608
3921846057, 1830296457, 5032186497, 6143928570, 1486972530, 4195028637, 7162908345, 5469821370, 1972480653, 1509482673, 1357694208, 9324187605, 3061725849, 5197843620, 2537418960, 6401729853, 7914563208, 2541987360, 6528140973, 2154087693, 7256903418, 3782601954, 8104629573, 3609258714, 3268749105, 6308541972, 8417569320, 5801367492, 9421375860, 8201749365, 4692750381, 8596371240, 4317806292, 7309428165, 5372908461, 4970538261, 7863920154, 7260394581, 6879405321, 7248503961, 7853902641, 8679015234, 9027384165, 8493716052, 9862103745, 9715064832
1023849765, 1027935648, 3921846057, 7914563208, 9864025713, 9872350146, 9876135240
5678904132, 5678904132, 2690457813, 2690457813, 5490321768, 5490321768, 6029417538, 6029417538, 8576492130, 8576492130, 5047168932, 8140532769

Topic 5.9 → 132587649, 146259387, 147596823, 154768239, 168529437, 235174869, 235486197, 246875193, 248615973, 261584793, 287615493, 321845697, 384576129, 461832579, 489576213, 498162753, 815372649, 857341269, 962534781, 982461357
143857269, 147852369, 148659273, 157628493, 184967523, 247163589, 253684179, 346928751, 428571963, 456293871, 469152837, 523916487, 541786923, 546298317, 574368219, 574926183, 794823561, 798245361, 812347569, 983625147

Topic 5.7 → 124983576, 216984375

Topic 5.6 → 240545042, 2164905378, 240656042, 2165904378, 315989513, 2843905617, 360212063, 3241908567, 360989063, 3248901567, 361323163, 3251908467, 364989463, 3284905167, 420545024, 3784905216, 420656024, 3785904216, 480212084, 4321908756, 480989084, 4328901756, 485767584, 4371908256, 486989684, 4382907156, 513545315, 4621907835, 531545135, 4783906215, 531878135, 4786903215, 536989635, 4832906715, 624656426, 5621907834, 630212036, 5671908324, 630989036, 5678901324, 642656246, 5783906214, 642989246, 5786903214, 713545317, 6421907853, 724656427, 6521907843, 753878357, 6784905213, 753989357, 6785904213, 840212048, 7561908432, 840989048, 7568901432, 915989519, 8243905671, 936989639, 8432906751, 951434159, 8562907431, 951989159, 8567902431, 963878369, 8674905321, 963989369, 8675904321

Topic 5.5 → 5498162037

Topic 5.3 → 173846952, 196347852

Topic 5.2 → 3094721658, 3907415628, 4093728651, 5694317082, 5817634902, 6819320457, 6918320754, 7039428156, 8169324507, 9127436508, 9168327504, 9304765128, 9403765821



Contributions

B.S. Rangaswamy (email) - go to topic 1

B.S. Rangaswamy (email) - go to topic 2









 

[up TOP OF PAGE]


( © All rights reserved ) - Last modified : October 3, 2023.
Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com