loading...



















(91*10^3-19)/99 *** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(91*10^3-19)/99 N=919 *** N is prime! Time: 0 sec
(91*10^9-19)/99 *** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(91*10^9-19)/99 N=919191919 *** N is prime! Time: 0 sec
(91*10^11-19)/99 *** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(91*10^11-19)/99 N=91919191919 Factor: 2 divides N - 1 Factor: 2^4 divides N + 1 Factor: 3 divides N + 1 Factor: 5 divides N + 1 Factor: 43 divides N - 1 Factor: 157 divides N + 1 Factorization results: F1=0.1765 F2=0.4174 F1=86 F2=37680 Pass: gcd(7^((N-1)/2) - 1, N) = 1: R20=91919191917 Pass: 7^(N-1) = 1 (mod N): R20=1 Pass: gcd(U{(N+1)/2}, N) = 1: d=17 p=1 q=-4 R20=38429075813 Pass: U{N+1} = 0 (mod N): d=17 p=1 q=-4 R20=0 Fail: gcd(U{(N+1)/3}, N) not = 1: d=17 p=1 q=-4 R20=0 Pass: gcd(U{(N+1)/3}, N) = 1: d=17 p=3 q=-2 R20=90547883614 Pass: U{N+1} = 0 (mod N): d=17 p=3 q=-2 R20=0 Pass: gcd(U{(N+1)/5}, N) = 1: d=17 p=3 q=-2 R20=24328691414 Pass: gcd(7^((N-1)/43) - 1, N) = 1: R20=64649682890 Pass: gcd(U{(N+1)/157}, N) = 1: d=17 p=3 q=-2 R20=38536716605 BLS tests passed: F1=0.1765 F2=0.4174 Main divisor test: F1=0.1490 F2=0.4174 G=0.5664 S=0.0000 T=1 G=1620240 Main divisor test passed: 1/1 *** N is prime! Time: 0 sec
(91*10^17-19)/99 *** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(91*10^17-19)/99 N=91919191919191919 Factor: 2 divides N - 1 Factor: 2^4 divides N + 1 Factor: 3^2 divides N + 1 Factor: 5 divides N + 1 Factor: 29 divides N - 1 Factor: 79 divides N + 1 Factorization results: F1=0.1040 F2=0.2803 F1=58 F2=56880 Pass: gcd(7^((N-1)/2) - 1, N) = 1: R20=91919191919191917 Pass: 7^(N-1) = 1 (mod N): R20=1 Pass: gcd(U{(N+1)/2}, N) = 1: d=21 p=1 q=-5 R20=35800430658758812 Pass: U{N+1} = 0 (mod N): d=21 p=1 q=-5 R20=0 Pass: gcd(U{(N+1)/3}, N) = 1: d=21 p=1 q=-5 R20=8999174815045168 Pass: gcd(U{(N+1)/5}, N) = 1: d=21 p=1 q=-5 R20=73943617370126866 Pass: gcd(7^((N-1)/29) - 1, N) = 1: R20=9453953799698218 Pass: gcd(U{(N+1)/79}, N) = 1: d=21 p=1 q=-5 R20=42016375063864109 BLS tests passed: F1=0.1040 F2=0.2803 Main divisor test: F1=0.0862 F2=0.2803 G=0.3665 S=0.0000 T=1 G=1649520 Main divisor test passed: 1/1 Final divisor test: F=0.2803 G=0.3665 H=0.9271 t=1 a=10 Final divisor test passed: 41/41 r=41 i=0 *** N is prime! Time: 1 sec
(91*10^23-19)/99 *** VFYPR 1.13F F_max=100000 S_min=100000 h=0 a=0 C=0 J=0 D=0 N=(91*10^23-19)/99 N=91919191919191919191919 Factor: 2 divides N - 1 Factor: 2^4 divides N + 1 Factor: 3 divides N + 1 Factor: 5 divides N + 1 Factor: 109 divides N + 1 Factorization results: F1=0.0131 F2=0.1924 F1=2 F2=26160 Pass: gcd(U{(N+1)/2}, N) = 1: d=21 p=1 q=-5 R20=33335715281287678973 Pass: U{N+1} = 0 (mod N): d=21 p=1 q=-5 R20=0 Fail: gcd(U{(N+1)/3}, N) not = 1: d=21 p=1 q=-5 R20=0 Pass: gcd(U{(N+1)/3}, N) = 1: d=21 p=3 q=-3 R20=9058713874085846312 Pass: U{N+1} = 0 (mod N): d=21 p=3 q=-3 R20=0 Pass: gcd(U{(N+1)/5}, N) = 1: d=21 p=3 q=-3 R20=36524269491601210054 Pass: gcd(U{(N+1)/109}, N) = 1: d=21 p=3 q=-3 R20=10141956808215736120 BLS tests passed: F1=0.0131 F2=0.1924 APRCL test T=180 S=35964929 APRCL main test (1) at level 3 for p=2 APRCL main test (1 2) done: p=2 q=3 k=1 g=2 h=0 R20=1 APRCL main test (1 3) done: p=2 q=5 k=2 g=2 h=0 R20=42424242424242424242 APRCL main test (1 4) done: p=2 q=7 k=1 g=3 h=1 R20=19191919191919191918 APRCL main test (1 5) done: p=2 q=13 k=2 g=2 h=2 R20=29137529137529137529 APRCL main test (1 6) done: p=2 q=11 k=1 g=2 h=1 R20=19191919191919191918 APRCL main test (1 7) done: p=2 q=31 k=1 g=3 h=1 R20=19191919191919191918 APRCL main test (1 8) done: p=2 q=61 k=2 g=2 h=2 R20=92607341895167748433 APRCL main test (1 9) done: p=2 q=19 k=1 g=2 h=1 R20=19191919191919191918 Retry APRCL main test (1 10) done: p=2 q=37 k=2 g=2 h=0 R20=8992038721768451498 Retry APRCL main test (1 11) done: p=2 q=181 k=2 g=2 h=2 R20=65283092516693444626 Retry from the beginning APRCL main test (1) at level 4 for p=2 APRCL main test (1 2) done: p=2 q=3 k=1 g=2 h=0 R20=1 APRCL main test (1 3) done: p=2 q=5 k=2 g=2 h=0 R20=42424242424242424242 APRCL main test (1 4) done: p=2 q=7 k=1 g=3 h=1 R20=19191919191919191918 APRCL main test (1 5) done: p=2 q=13 k=2 g=2 h=2 R20=29137529137529137529 APRCL main test (1 6) done: p=2 q=11 k=1 g=2 h=1 R20=19191919191919191918 APRCL main test (1 7) done: p=2 q=31 k=1 g=3 h=1 R20=19191919191919191918 APRCL main test (1 8) done: p=2 q=61 k=2 g=2 h=2 R20=92607341895167748433 Retry APRCL main test (1 9) done: p=2 q=19 k=1 g=2 h=1 R20=19191919191919191918 Retry APRCL main test (1 10) done: p=2 q=37 k=2 g=2 h=0 R20=8992038721768451498 Retry APRCL main test (1 11) done: p=2 q=181 k=2 g=2 h=2 R20=65283092516693444626 Retry APRCL L_2 condition satisfied APRCL main test (1 12) done: p=2 q=29 k=2 g=2 h=3 R20=98337717243781453056 APRCL tests for p=2 completed APRCL main test (2) at level 4 for p=3 APRCL L_3 condition satisfied APRCL main test (2 4) done: p=3 q=7 k=1 g=3 h=1 R20=93939393939393939395 APRCL main test (2 5) done: p=3 q=13 k=1 g=2 h=1 R20=77777777777777777778 APRCL main test (2 7) done: p=3 q=31 k=1 g=3 h=1 R20=54056695992179863147 APRCL main test (2 8) done: p=3 q=61 k=1 g=2 h=0 R20=40519953634707733068 APRCL main test (2 9) for p=3 q=19 not needed APRCL main test (2 10) for p=3 q=37 not needed APRCL main test (2 11) for p=3 q=181 not needed APRCL tests for p=3 completed APRCL main test (3) at level 4 for p=5 APRCL L_5 condition satisfied APRCL main test (3 6) done: p=5 q=11 k=1 g=2 h=1 R20=42384873503587451343 APRCL main test (3 7) done: p=5 q=31 k=1 g=3 h=1 R20=30364556734427080914 APRCL main test (3 8) done: p=5 q=61 k=1 g=2 h=1 R20=61770489649216293083 APRCL main test (3 11) for p=5 q=181 not needed APRCL tests for p=5 completed APRCL main test (4) at level 4 for p=7 APRCL L_7 condition satisfied APRCL main test (4 12) for p=7 q=29 not needed APRCL tests for p=7 completed Main divisor test: F1=0.0000 F2=0.1924 G=0.5025 S=0.3102 T=1260 G=346626199920 Main divisor test passed: 105/1260 *** N is prime! Time: 0 sec
(91*10^25229-19)/99 PFGW 1.1 test for probable primality in bases 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, and 251 (91*10^25229-19)/99 is 3-PRP! (215.090000 seconds) (91*10^25229-19)/99 is 5-PRP! (218.990000 seconds) (91*10^25229-19)/99 is 7-PRP! (210.580000 seconds) (91*10^25229-19)/99 is 11-PRP! (211.630000 seconds) (91*10^25229-19)/99 is 13-PRP! (209.700000 seconds) (91*10^25229-19)/99 is 17-PRP! (215.370000 seconds) (91*10^25229-19)/99 is 19-PRP! (206.140000 seconds) (91*10^25229-19)/99 is 23-PRP! (213.770000 seconds) (91*10^25229-19)/99 is 29-PRP! (217.010000 seconds) (91*10^25229-19)/99 is 31-PRP! (207.680000 seconds) (91*10^25229-19)/99 is 37-PRP! (211.460000 seconds) (91*10^25229-19)/99 is 41-PRP! (220.090000 seconds) (91*10^25229-19)/99 is 43-PRP! (217.340000 seconds) (91*10^25229-19)/99 is 47-PRP! (210.140000 seconds) (91*10^25229-19)/99 is 53-PRP! (219.430000 seconds) (91*10^25229-19)/99 is 59-PRP! (207.560000 seconds) (91*10^25229-19)/99 is 61-PRP! (210.530000 seconds) (91*10^25229-19)/99 is 67-PRP! (207.010000 seconds) (91*10^25229-19)/99 is 71-PRP! (208.170000 seconds) (91*10^25229-19)/99 is 73-PRP! (209.810000 seconds) (91*10^25229-19)/99 is 79-PRP! (209.930000 seconds) (91*10^25229-19)/99 is 83-PRP! (214.810000 seconds) (91*10^25229-19)/99 is 89-PRP! (207.060000 seconds) (91*10^25229-19)/99 is 97-PRP! (213.280000 seconds) (91*10^25229-19)/99 is 101-PRP! (209.770000 seconds) (91*10^25229-19)/99 is 103-PRP! (205.420000 seconds) (91*10^25229-19)/99 is 107-PRP! (212.890000 seconds) (91*10^25229-19)/99 is 109-PRP! (216.950000 seconds) (91*10^25229-19)/99 is 113-PRP! (208.500000 seconds) (91*10^25229-19)/99 is 127-PRP! (214.210000 seconds) (91*10^25229-19)/99 is 251-PRP! (215.860000 seconds)