World!Of
Numbers
HOME plate
WON |
Various Palindromic Sums
rood Sums of Squares rood Sums of Cubes rood Sums of Primes rood Sums of Powers rood
rood Sum of First Numbertypes rood Sequence Products rood Reversal Products
rood Pythagorean Triples rood
rood Palindromes in other Bases rood Palindromes in Concatenations


Introduction

Palindromic numbers are numbers which read the same from
 p_right left to right (forwards) as from the right to left (backwards) p_left
Here are a few random examples : 353, 37173, 24611642

Multigrade Palprimes Patterns
Diophantine Equation - 3rd & 4th powers
Diophantine Equations - 2nd powers
Palindromic Pattern from Sums of Consecutives
Palindromic Pattern from Sums of Squared Palindromes
Palindromic Sum of Powers from Consecutives
Palindromes from Consecutive Primes 2 to 23 and the Nine Digits Anagrams
Palindromes from Consecutive Primes 3 to 29 and the Nine Digits Anagrams
A record palindrome using startprime 29, ninedigital 792436518 and base 2
A record palindrome using consecutive Fibonacci terms and ninedigital 947862153
44 palindromes arising from the sum of ten consecutive Fibonacci terms to the power of the digits of pandigitals


Various Palindromic Sums


Index Nr Base Sequence ExpressionInitials
Various Palindromic Sums Length 
   
[VARIA 1] Multigrade Palprimes Patterns
Contribution by Carlos Rivera [ August 13, 1999 ]
See also Carlos' Puzzle 65 on Multigrade Relations.
2 10501 + 14741 + 15451 = 11411 + 12721 + 16561
105012 + 147412 + 154512 = 114112 + 127212 + 165612

 
1 181 + 727 + 757 = 353 + 383 + 929
1812 + 7272 + 7572 = 3532 + 3832 + 9292

flash
! Next is an ingenuously beautiful trigrade equation using palindromes
from Albert Beiler's book “Recreations in the Theory of Numbers”
13031 + 42024 + 53035 + 57075 + 68086 + 97079
= 330330 =
31013 + 24042 + 35053 + 75057 + 86068 + 79097
130312 + 420242 + 530352 + 570752 + 680862 + 970792
= 22066126024 =
310132 + 240422 + 350532 + 750572 + 860682 + 790972
130313 + 420243 + 530353 + 570753 + 680863 + 970793
= 1642056213257460 =
310133 + 240423 + 350533 + 750573 + 860683 + 790973

Trigrade
from
A. Beiler's
book
page 164
   
[VARIA 2] Diophantine Equation - 3rd & 4th powers
Sources : Puzzle 47 & Puzzle 48
copied from Carlos Rivera's PP&P site.
2 693 + 4473 + 89333 terms
92933
1 304 + 1204 + 2724 + 31544 terms
35343
   
[VARIA 3] Diophantine Equations - 2nd powers
From Hugo Sánchez [ May 3, 1999 ]
3 11.0112 + 22.0222 + 33.0332 + 66.0662 = 2 x 55.05524 terms
2 x 55.0552 = 33.0332 + 44.0442 + 55.05523 terms
2 2122 + 3432 + 4242 + 9792 = 1.300.8104 terms
1.300.810 = 5552 + 6362 + 76723 terms
1 222 + 332 + 442 + 992 = 13.3104 terms
13.310 = 552 + 662 + 7723 terms
   
[VARIA 4] Palindromic Pattern from Sums of Consecutives
By Carlos Rivera [ Feb 27, 1999 ]
1 S(2 + 3        + 4) = 9
S(2 + 3 + ... + 44) = 989
S(2 + 3 + ... + 444) = 98789
S(2 + 3 + ... + 4444) = 9876789
S(2 + 3 + ... + 44444) = 987656789
S(2 + 3 + ... + 444444) = 98765456789
S(2 + 3 + ... + 4444444) = 9876543456789
S(2 + 3 + ... + 44444444) = 987654323456789
S(2 + 3 + ... + 444444444) = 98765432123456789
S(2 + 3 + ... + 4444444444) = 9876543210123456789
pattern
is
finite !
Thank you Carlos for this beautiful construction. 
   
[VARIA 5] Palindromic Pattern from Sums of Squared Palindromes
By Hugo Sánchez [ May 3, 1999 ]
1 112 + 222 + ... + 662
= 91 x 112 = 11011
1112 + 2222 + ... + 6662
= 91 x 1112 = 1121211
11112 + 22222 + ... + 66662
= 91 x 11112 = 112323211
111112 + 222222 + ... + 666662
= 91 x 111112 = 11234343211
1111112 + 2222222 + ... + 6666662
= 91 x 1111112 = 1123454543211
11111112 + 22222222 + ... + 66666662
= 91 x 11111112 = 112345656543211
111111112 + 222222222 + ... + 666666662
= 91 x 111111112 = 11234567676543211
1111111112 + 2222222222 + ... + 6666666662
= 91 x 1111111112 = 1123456787876543211
11111111112 + 22222222222 + ... + 66666666662
= 91 x 11111111112 = 112345678989876543211
pattern
is
finite !
Thanks Hugo for this beautiful pattern.
Note that 91 is in fact a pseudopalindrome 1n1
See my palindromic squares page for more information
 
   
[VARIA 6] Palindromic Sum of Powers from Consecutives
By Carlos Rivera [ Feb 27, 1999 ]
4 15 + 25 + 35 + 45 + 55 + 65 + 75 + 85 + 95 + 105 + 115 + 125 + 13513 terms
1.002.001
1002001 = 10012 = 72 x 112 x 132
7
3 15 + 252 terms
332
2 14 + 24 + 34 + 44 + 545 terms
9793
1 12 + 22 + 32 +... ...+ 1802 + 1812
For sum of squares up to 11 terms see Sum of Squares.
181 terms
1.992.9917
   
[VARIA 7] Palindromes from Consecutive Primes 2 to 23
and the Nine Digits Anagrams

By definition the palindromes are always composite.
By Carlos Rivera [ Feb 11, 1999 ]
8 28 + 39 + 52 + 74 + 116 + 131 + 177 + 193 + 2359 terms
418.575.8149
7 23 + 36 + 59 + 75 + 118 + 137 + 174 + 192 + 2319 terms
279.161.9729
6 24 + 37 + 59 + 76 + 118 + 135 + 173 + 191 + 2329 terms
216.808.6129
5 27 + 38 + 51 + 79 + 112 + 134 + 175 + 196 + 2339 terms
88.866.8888
4 26 + 39 + 58 + 74 + 111 + 137 + 175 + 193 + 2329 terms
64.588.5468
3 29 + 38 + 56 + 73 + 117 + 132 + 171 + 194 + 2359 terms
26.077.0628
2 28 + 37 + 59 + 76 + 113 + 134 + 171 + 195 + 2329 terms
4.579.7547
1 28 + 39 + 57 + 71 + 116 + 134 + 173 + 195 + 2329 terms
4.379.7347
   
[VARIA 8] Palindromes from Consecutive Primes 3 to 29
and the Nine Digits Anagrams

The palindromes have a chance to be prime.
By Carlos Rivera [ Feb 11, 1999 ]
4 39 + 58 + 74 + 111 + 133 + 176 + 192 + 237 + 2959 terms
3.449.889.44310
3 37 + 59 + 78 + 113 + 134 + 171 + 195 + 236 + 2929 terms
158.262.8519
2 34 + 58 + 79 + 112 + 137 + 176 + 195 + 231 + 2939 terms
130.131.0319
1 39 + 58 + 77 + 116 + 135 + 174 + 193 + 232 + 291
Note that the primes and the 9-digit anagram exponents are
well ordered but in opposite direction !
See also WONplate 55
9 terms
3.467.6437
   
[VARIA 9] A record palindrome using
startprime 29, ninedigital 792436518 and base 2

By PDG [ Jun 10, 2022 ]
1 297 + 319 + 372 + 414 + 433 + 476 + 535 + 591 + 6189 terms
218.175.385.351.779 (base 10)
110001100110110111101010010101111011011001100011 (base 2)
15
48
   
[VARIA 10] A record palindrome using consecutive
Fibonacci terms and ninedigital 947862153

By Alexandru Petrescu [ Jun 17, 2022 ]
1 39 + 54 + 87 + 138 + 216 + 342 + 551 + 895 + 14439 terms
6.490.660.94610
   
[VARIA 11] 44 palindromes arising from the sum of ten consecutive
Fibonacci terms to the power of the digits of pandigitals

By Alexandru Petrescu [ Nov 26, 2025 ]
1 12 + 25 + 34 + 58 + 83 + 131 + 219 + 340 + 557 + 89610 terms
2.813.696.963.18213
2 18 + 23 + 39 + 54 + 81 + 132 + 216 + 347 + 555 + 89010 terms
53.112.421.13511
3 13 + 21 + 38 + 59 + 84 + 136 + 210 + 347 + 555 + 89210 terms
53.033.433.03511
4 16 + 28 + 37 + 52 + 83 + 139 + 211 + 344 + 550 + 89510 terms
16.189.898.16111
5 19 + 23 + 38 + 50 + 81 + 137 + 212 + 346 + 554 + 89510 terms
7.200.770.02710
6 17 + 28 + 39 + 53 + 84 + 132 + 211 + 346 + 550 + 89510 terms
7.128.888.21710
7 15 + 28 + 31 + 59 + 84 + 130 + 217 + 346 + 552 + 89310 terms
3.348.558.43310
8 18 + 29 + 30 + 57 + 83 + 132 + 215 + 346 + 554 + 89110 terms
1.558.118.55110
9 13 + 27 + 36 + 59 + 85 + 138 + 212 + 340 + 554 + 89110 terms
826.868.6289
10 17 + 20 + 36 + 59 + 85 + 138 + 213 + 344 + 551 + 89210 terms
819.070.9189
11 18 + 20 + 36 + 57 + 89 + 134 + 213 + 341 + 555 + 89210 terms
637.626.7369
12 12 + 27 + 39 + 58 + 81 + 136 + 210 + 343 + 555 + 89410 terms
571.303.1759
13 19 + 27 + 38 + 50 + 84 + 136 + 212 + 343 + 555 + 89110 terms
508.161.8059
14 16 + 28 + 35 + 54 + 89 + 137 + 213 + 341 + 552 + 89010 terms
196.979.6919
15 15 + 27 + 38 + 56 + 89 + 133 + 212 + 341 + 554 + 89010 terms
143.393.3419
16 17 + 23 + 38 + 56 + 89 + 134 + 215 + 342 + 550 + 89110 terms
138.353.8319
17 12 + 26 + 37 + 58 + 89 + 135 + 211 + 344 + 553 + 89010 terms
136.484.6319
18 17 + 26 + 35 + 58 + 89 + 132 + 210 + 344 + 553 + 89110 terms
136.111.6319
19 12 + 26 + 39 + 54 + 88 + 137 + 211 + 345 + 550 + 89310 terms
125.686.5219
20 12 + 29 + 38 + 56 + 85 + 137 + 213 + 341 + 550 + 89410 terms
125.555.5219
21 18 + 29 + 36 + 52 + 81 + 137 + 210 + 345 + 554 + 89310 terms
118.040.8119
22 18 + 29 + 37 + 51 + 86 + 130 + 213 + 345 + 552 + 89410 terms
108.454.8019
23 17 + 24 + 39 + 55 + 88 + 131 + 216 + 342 + 550 + 89310 terms
103.272.3019
24 13 + 29 + 37 + 54 + 88 + 135 + 216 + 342 + 550 + 89110 terms
102.919.2019
25 18 + 27 + 33 + 59 + 85 + 136 + 212 + 340 + 551 + 89410 terms
69.555.5968
26 16 + 28 + 32 + 59 + 87 + 131 + 215 + 344 + 553 + 89010 terms
9.637.3697
27 19 + 23 + 37 + 58 + 84 + 136 + 215 + 342 + 551 + 89010 terms
9.309.0397
28 16 + 27 + 38 + 59 + 81 + 130 + 215 + 344 + 553 + 89210 terms
7.554.5577
29 18 + 27 + 35 + 59 + 84 + 136 + 212 + 341 + 550 + 89310 terms
7.489.8477
30 18 + 27 + 36 + 59 + 82 + 133 + 215 + 344 + 551 + 89010 terms
7.376.7377
31 18 + 29 + 35 + 50 + 87 + 136 + 214 + 343 + 552 + 89110 terms
7.161.6177
32 17 + 28 + 36 + 59 + 81 + 134 + 215 + 340 + 552 + 89310 terms
6.774.7767
33 14 + 29 + 38 + 56 + 87 + 133 + 215 + 340 + 551 + 89210 terms
6.214.1267
34 18 + 26 + 35 + 59 + 87 + 132 + 210 + 344 + 553 + 89110 terms
5.553.5557
35 16 + 25 + 38 + 59 + 87 + 133 + 212 + 344 + 550 + 89110 terms
5.395.9357
36 11 + 26 + 38 + 59 + 87 + 135 + 214 + 340 + 553 + 89210 terms
4.796.9747
37 17 + 29 + 38 + 54 + 86 + 131 + 215 + 340 + 553 + 89210 terms
4.528.2547
38 18 + 25 + 37 + 59 + 86 + 133 + 212 + 344 + 550 + 89110 terms
3.556.5537
39 19 + 26 + 38 + 50 + 87 + 135 + 214 + 342 + 551 + 89310 terms
3.375.7337
40 19 + 22 + 38 + 56 + 87 + 135 + 214 + 340 + 553 + 89110 terms
2.851.5827
41 17 + 29 + 38 + 56 + 83 + 135 + 212 + 344 + 550 + 89110 terms
1.731.3717
42 17 + 29 + 38 + 56 + 85 + 130 + 213 + 344 + 551 + 89210 terms
1.409.0417
43 17 + 25 + 39 + 58 + 86 + 133 + 214 + 340 + 552 + 89110 terms
872.2786
44 19 + 28 + 37 + 56 + 85 + 134 + 213 + 341 + 552 + 89010 terms
91.7195


For reference goals and easy searching I list here all the nine- & pandigitals implicitly displayed in these topics.

Varia 7 → 892461735, 369587421, 479685312, 781924563, 698417532, 986372145, 879634152, 897164352

Varia 8 → 984136275, 798341562, 489276513, 987654321

Varia 11 → 2548319076, 8394126750, 3189460752, 6872391405, 9380172645, 7893421605, 5819407623, 8907325641, 3769582041, 7069583412, 8067943152, 2798160354, 9780462351, 6854973120, 5786932140, 7386945201, 2678951430, 7658920431, 2694871503, 2986573104, 8962170543, 8971603524, 7495816203, 3974856201, 8739562014, 6829715430, 9378465210, 678905432, 87594662103, 8769235410, 8950764321, 7869145023, 4986735012, 8659720431, 6589732401, 1689754032, 7984615032, 8579632401, 9680754213, 9286754031, 7986352401, 7986503412, 7598634021, 9876543120


Contributions

Hugo Sánchez (email) a 'profesor de Educación Media que cultiva la Matemática Recreativa'
from Caracas, Venezuela found some interesting sequences- go to topic 3 and topic 5.

Carlos Rivera (email) found among others these beautiful patterns- go to topic 2, go to topic 4, topic 6, topic 7 and topic 8.









[up TOP OF PAGE]


( © All rights reserved ) - Last modified : November 27, 2025.
Patrick De Geest - Belgium flag - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com