Introduction
Palindromic numbers are numbers which read the same from
left to right (forwards)
as from the right to left (backwards)
Here are a few random examples : 7 , 3113 , 44611644
Go directly to the Base 2 to Base 60 - with gaps - Tables topic
Go directly to the Base 2 Messages topic
Palindromic in Base 10 and Bases 2 to 60 - with gaps Tables
Index Nr
Also palindromic in base 2 (binary)A007632 L base 10
L base 2
Next > [183]
183 9794258529088310956256765905095676526590138809258524979 55 183
182 7992515739300692681583388637368833851862960039375152997 55 183
181 5982107767230157388234011419141104328837510327677012895 55 182
180 5750352680855632597679040581850409767952365580862530575 55 182
179 5500130929952642025961499398939941695202462599290310055 55 182
178 5375810570128326670426378465648736240766238210750185735 55 182
177 1610250372237506394572456221226542754936057322730520161 55 181
176 141608322140499819558130089980031855918994041223806141 54 177
175 98269568061626490790443471917434409709462616086596289 53 177
174 96974333658798698186600459595400668189689785633347969 53 177
173 74107193679989476350632192529123605367498997639170147 53 176
172 38042682015138742476430662826603467424783151028624083 53 175
171 14290800261309297950160720602706105979290316200809241 53 174
170 11583408501354096073227429192472237069045310580438511 53 173
169 3329456979344803072321377337731232703084439796549233 52 172
168 1894500919149741184783894664983874811479419190054981 52 171
167 1671376559622765380050133113310500835672269556731761 52 171
166 546590550388169569066255343552660965961883055095645 51 169
165 544889901625422417825862090268528714224526109988445 51 169
164 349755095251390482672234414432276284093152590557943 51 168
163 308714513290492817327216515612723718294092315417803 51 168
162 128426799107797312365090999090563213797701997624821 51 167
161 9142687306518774468290258520928644778156037862419 49 163
160 7109242970502610649115178715119460162050792429017 49 163
159 1873893355166996611906735376091166996615533983781 49 161
158 597817365870480462496846648694264084078563718795 48 159
157 502186653128032879493361163394978230821356681205 48 159
156 102735644379963218861031130168812369973446537201 48 157
155 78737696079148631316169196161313684197069673787 47 156
154 74953152103456169263148284136296165430125135947 47 156
153 72830033748815722240681118604222751884733003827 47 156
152 72224512737657344148643434684144375673721542227 47 156
151 56243939994005432191600400619123450049993934265 47 156
150 36755925874534219715185758151791243547852955763 47 155
149 16422159001061376847917371974867316010095122461 47 154
148 12328899531897059171731113717195079813599882321 47 154
147 9335388324586156026843333486206516854238835339 46 153
146 5318935032766104711807997081174016672305398135 46 152
145 903240486809073407096959690704370908684042309 45 150
144 706400325289926993853434358399629982523004607 45 149
143 557019370941199612258585852216991149073910755 45 149
142 9101547767757547725021205277457577677451019 43 143
141 7342779513978827245484845427288793159772437 43 143
140 3381578420704603001613161003064070248751833 43 142
139 1816060344791285708869688075821974430606181 43 141
138 905357630732463833436634338364237036753509 42 140
137 595943598626320807905509708023626895349595 42 139
136 309612431907274418544445814472709134216903 42 138
135 170341815153453197154451791354351518143071 42 137
134 139035351443367699760067996763344153530931 42 137
133 128795669673344381770077183443376966597821 42 137
132 98801466348600079992129997000684366410889 41 137
131 56545858306667087923432978076660385854565 41 136
130 38090421176450233778487733205467112409083 41 135
129 31636759764024794204540249742046795763613 41 135
128 14327425216354951264146215945361252472341 41 134
127 7114907950920173924554293710290597094117 40 133
126 1634587141488515712882175158841417854361 40 131
125 1017421766189445102992015449816671247101 40 130
124 773609618198307097595790703891816906377 39 130
123 551700061998405245575542504899160007155 39 129
122 131674457014330218696812033410754476131 39 127
121 124192421350471300727003174053124291421 39 127
120 122240824002234545959545432200428042221 39 127
119 32190158233101105022050110133285109123 38 125
118 9970387454991896491946981994547830799 37 123
117 9707999142717984907094897172419997079 37 123
116 5893890080115984244424895110800983985 37 123
115 1681824725831390428240931385274281861 37 121
114 1323475457008895965695988007545743231 37 120
113 998021119318189842248981813911120899 36 120
112 794397832642722540045227246238793497 36 120
111 710084230446469950059964644032480017 36 120
110 139124355701640720027046107553421931 36 117
109 96754720977532710701723577902745769 36 117
108 94285848717805140304150871784858249 36 117
107 76759778311938325452383911387795767 36 116
106 54074940541725088788052714504947045 36 116
105 10827628430039640604693003482672801 36 114
104 10652099006552766666725560099025601 36 114
103 9932525402284695775964822045252399 35 113
102 1480869563960100770010693659680841 35 111
101 1409460884147943003497414880649041 35 111
100 579782100975917393719579001287975 34 109
99 332997156422555464555224651799233 33 109
98 188726493036450333054630394627881 33 108
97 7155681676104835384016761865517 31 103
96 3390741646331381831336461470933 31 102
95 1115792035060833380605302975111 31 100
94 378059787464677776464787950873 30 99
93 56532345659072227095654323565 29 96
92 30658464822225352222846485603 29 95
91 30000258151173237115185200003 29 95
90 19756291244127372144219265791 29 94
89 17869806142184248124160896871 29 94
88 1609061098335005338901609061 28 91
87 795280629691202196926082597 27 90
86 552963956270141072659369255 27 89
85 532079161251434152161970235 27 89
84 Prime Curios! 39071450509166619050541709327 89
83 351095331428353824133590153 27 89
82 138758321383797383123857831 27 87
81 50824513851188115831542805 26 86
80 7475703079870789703075747 25 83
79 7260988688520258868890627 25 83
78 5812988563013103658892185 25 83
77 1219228158701078518229121 25 81
76 1194313761393931673134911 25 80
75 1130486074817184706840311 25 80
74 94261805583838550816249 23 77
73 92913401775957710431929 23 77
72 72928088195859188082927 23 76
71 17461998948684989916471 23 74
70 539475328171823574935 21 69
69 114354126121621453411 21 67
68 94778157422475187749 20 67
67 32889941788714998823 20 65
66 10879740244204797801 20 64
65 9674868723278684769 19 64
64 7036267126217626307 19 63
63 313558153351855313 18 59
62 161206152251602161 18 58
61 55952637073625955 17 56
60 37629927072992673 17 56
59 37078796869787073 17 56
58 34104482028440143 17 55
57 18279440804497281 17 55
56 10819671917691801 17 54
55 10457587478575401 17 54
54 3148955775598413 16 52
53 1793770770773971 16 51
52 933138363831339 15 50
51 552212535212255 15 49
50 34141388314143 14 45
49 9484874784849 13 44
48 Prime Curios! 728471717482713 43
47 7227526257227 13 43
46 5652622262565 13 43
45 1999925299991 13 41
44 1794096904971 13 41
43 1792704072971 13 41
42 1474922294741 13 41
41 1413899983141 13 41
40 1234104014321 13 41
39 136525525631 12 37
38 110948849011 12 37
37 75015151057 11 37
36 32479297423 11 35
35 18462126481 11 35
34 10050905001 11 34
33 7451111547 10 33
32 1290880921 10 31
31 939474939 9 30
30 910373019 9 30
29 719848917 9 30
28 13500531 8 24
27 5841485 7 23
26 5259525 7 23
25 5071705 7 23
24 3129213 7 22
23 1979791 7 21
22 1934391 7 21
21 1758571 7 21
20 585585 6 20
19 73737 5 17
18 53835 5 16
17 53235 5 16
16 39993 5 16
15 32223 5 15
14 15351 5 14
13 9009 4 14
12 7447 4 13
11 717 3 10
10 585 3 10
9 Prime Curios! 3133 9
8 99 2 7
7 33 2 6
6 9 1 4
5 Prime! 71 3
4 Prime! 51 3
3 Prime! 31 2
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 3 (ternary)A007633 L base 10
L base 3
Next > 10^23
74 29397375542624557379392 23 48
73 26365450743834705456362 23 47
72 12241986986968968914221 23 47
71 2874264042112404624782 22 45
70 821697400030004796128 21 44
69 671028608646806820176 21 44
68 277444488080884444772 21 43
67 134137835777538731431 21 43
66 125556514464415655521 21 43
65 65691169644696119656 20 42
64 17706590033009560771 20 41
63 6942498569658942496 19 40
62 4054962560652694504 19 40
61 Prime! 319526953035962591319 39
60 2746827231327286472 19 39
59 2283864176714683822 19 39
58 659295875578592956 18 38
57 424676146641676424 18 37
56 354164182281461453 18 37
55 248480984489084842 18 37
54 65192854245829156 17 36
53 21669625852696612 17 35
52 21075228182257012 17 35
51 1984267447624891 16 33
50 534174353471435 15 31
49 438222212222834 15 31
48 69490044009496 14 30
47 6852190912586 13 27
46 5972209022795 13 27
45 4978471748794 13 27
44 4657098907564 13 27
43 4320048400234 13 27
42 2121010101212 13 26
41 81234543218 11 23
40 58049094085 11 23
39 2518338152 10 20
38 885626588 9 19
37 520080025 9 19
36 387505783 9 19
35 239060932 9 18
34 211131112 9 18
33 123464321 9 17
32 Prime! 1129692119 17
31 83155138 8 17
30 27711772 8 16
29 Prime! 79494977 15
28 7875787 7 15
27 5737375 7 15
26 4287824 7 14
25 4251524 7 14
24 4219124 7 14
23 4022204 7 14
22 2985892 7 14
21 1521251 7 13
20 848848 6 13
19 Prime! 937395 11
18 92929 5 11
17 76267 5 11
16 75457 5 11
15 74647 5 11
14 48884 5 10
13 29092 5 10
12 Prime! 7573 7
11 656 3 6
10 484 3 6
9 242 3 5
8 212 3 5
7 Prime! 1513 5
6 121 3 5
5 8 1 2
4 4 1 2
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 4A029961 L base 10
L base 4
Next > 10^34
99 7179388640860660330660680468839717 34 57
98 5108871198905577557755098911788015 34 56
97 994887846928401212104829648788499 33 55
96 831689027065710434017560720986138 33 55
95 681970163682115333511286361079186 33 55
94 582281078505704363407505870182285 33 55
93 562496915896771070177698519694265 33 55
92 372432716388987767789883617234273 33 55
91 60036324544335099053344542363006 32 53
90 31197674993704500540739947679113 32 53
89 5435741640249592959420461475345 31 52
88 1875014103448187818443014105781 31 51
87 1871235782426682866242875321781 31 51
86 1816218002915034305192008126181 31 51
85 545349408734694496437804943545 30 50
84 92792216149502820594161229729 29 49
83 15821048498880208889484012851 29 47
82 7778107491576446751947018777 28 47
81 666101379010252010973101666 27 45
80 541144382839404938283441145 27 45
79 353061698367474763896160353 27 45
78 336725943608707806349527633 27 45
77 35852144650688605644125853 26 43
76 5667740260737370620477665 25 42
75 5644977785034305877794465 25 42
74 5205366624977794266635025 25 42
73 5072939121521251219392705 25 42
72 1622633305817185033362261 25 41
71 224769553250052355967422 24 39
70 149265574723327475562941 24 39
69 109895081241142180598901 24 39
68 98996197452425479169989 23 39
67 59923211850205811232995 23 38
66 59737594200100249573795 23 38
65 57410264882528846201475 23 38
64 874218768525867812478 21 35
63 830935451626154539038 21 35
62 819177862404268771918 21 35
61 542737478606874737245 21 35
60 371765223161322567173 21 35
59 317920613282316029713 21 35
58 43982928355382928934 20 33
57 41378114300341187314 20 33
56 5808197420247918085 19 32
55 5452702834382072545 19 32
54 3896203035303026983 19 31
53 3614621407041264163 19 31
52 3610232617162320163 19 31
51 Prime! 127023723532732072119 31
50 101882796697288101 18 29
49 96062045454026069 17 29
48 57264776467746275 17 28
47 55934950005943955 17 28
46 13585963536958531 17 27
45 7145572222755417 16 27
44 912702454207219 15 25
43 815969141969518 15 25
42 646219242912646 15 25
41 41830077003814 14 23
40 5690277720965 13 22
39 3445416145443 13 21
38 1649061609461 13 21
37 1491278721941 13 21
36 508152251805 12 20
35 506802208605 12 20
34 Prime! 7397969793711 19
33 59201610295 11 18
32 53406060435 11 18
31 51717171715 11 18
30 954656459 9 15
29 623010326 9 15
28 53822835 8 13
27 5679765 7 12
26 5614165 7 12
25 5297925 7 12
24 5259525 7 12
23 5226225 7 12
22 5051505 7 12
21 3866683 7 11
20 Prime! 38262837 11
19 2215122 7 11
18 1801081 7 11
17 506605 6 10
16 57675 5 8
15 55655 5 8
14 55255 5 8
13 53235 5 8
12 7997 4 7
11 939 3 5
10 Prime! 7873 5
9 666 3 5
8 393 3 5
7 Prime! 3733 5
6 55 2 3
5 Prime! 51 2
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 5A029962 L base 10
L base 5
Next > 10^65
235 99543624930708890704741862774786868747726814740709880703942634599 65 93
234 99147784312541604654976982616872327861628967945640614521348774199 65 93
233 6328602704926148022920974990772442770994790292208416294072068236 64 92
232 3214064425866839870550144501476006741054410550789386685244604123 64 91
231 1194298706261022647836038501203773021058306387462201626078924911 64 91
230 64246994130107791610563653101711710135636501619770103149964246 62 89
229 64246947151782073152069988044044044088996025137028715174964246 62 89
228 6726055113244810012075917310121210137195702100184423115506276 61 88
227 1537290958777611519852104788359538874012589151167778590927351 61 87
226 1532805993046939711317225597922297955227131179396403995082351 61 87
225 883356191198880777154229788401104887922451777088891191653388 60 86
224 855387148635738589348806089598895980608843985837536841783558 60 86
223 65611982177205547205464612752725721646450274550277128911656 59 85
222 49066470901871197820861535773837753516802879117810907466094 59 84
221 46564717781637429651286018560906581068215692473618771746564 59 84
220 46193204666936421034725056580608565052743012463966640239164 59 84
219 26819889378948503897349399266566299394379830584987398891862 59 84
218 26819327009787305648386096848684869068384650378790072391862 59 84
217 26429470394241104810070078034443087007001840114249307492462 59 84
216 23505993486869791222414191577177519141422219796868439950532 59 84
215 23505101759336115455443641282328214634455451163395710150532 59 84
214 23110716142491983043006607134643170660034038919424161701132 59 84
213 9939319018903649287536637142992417366357829463098109139399 58 83
212 9663532981431429183577455753113575547753819241341892353669 58 83
211 323992966009823764929890740888047098929467328900669299323 57 81
210 147607387738648286008522726555627225800682846837783706741 57 81
209 147479499604608433501150032393230051105334806406994974741 57 81
208 143388662988323740825383628646826383528047323889266883341 57 81
207 143321023950291019441762870959078267144910192059320123341 57 81
206 119863297658330074654226108000801622456470033856792368911 57 81
205 119628570830560390462705268656862507264093065038075826911 57 81
204 Prime! 727817567724919671178159541114595187117691942776571872755 79
203 7273374492984432327579333256523339757232344892944733727 55 79
202 7222664231853227887310973231323790137887223581324662227 55 79
201 6432766862954931730863303210123033680371394592686672346 55 79
200 85716526225965980181166063136066118108956952262561758 53 76
199 85716017941173123289734017871043798232137114971061758 53 76
198 85716017477430276081758313031385718067203477471061758 53 76
197 82804167487745127987827179797172878972154778476140828 53 76
196 4677402018132779160228780990878220619772318102047764 52 74
195 842273089643651424746389343983647424156346980372248 51 73
194 842273084433104837434610484016434738401334480372248 51 73
193 842226914944632453620370868073026354236449419622248 51 73
192 14866415178804123258016455461085232140887151466841 50 71
191 14453303304094582613377100177331628549040330335441 50 71
190 649936241751591323106805508601323195157142639946 48 69
189 644863400626259088360013310063880952626004368446 48 69
188 18946467978107252552707370725525270187976464981 47 67
187 18443384607066153566982628966535166070648334481 47 67
186 15431793058951766720187878102766715985039713451 47 67
185 15088344815041421175663836657112414051844388051 47 67
184 15083888608839064281812521818246093880688838051 47 67
183 628697035925578552616888616255875529530796826 45 65
182 623253838747288310488898884013882747838352326 45 65
181 623206113631461755935454539557164136311602326 45 65
180 453749841231167144063656360441761132148947354 45 64
179 453511538505603587495626594785306505835115354 45 64
178 299610806696519408825434528804915696608016992 45 64
177 299610383727266016934646439610662727383016992 45 64
176 295964701807089636010787010636980708107469592 45 64
175 295282435673135443681676186344531376534282592 45 64
174 266201850128363317817101718713363821058102662 45 64
173 98966828061040971279788797217904016082866989 44 63
172 98912606618485761310633601316758481660621989 44 63
171 84086672007102503839977993830520170027668048 44 63
170 81240685713569129553899835592196531758604218 44 63
169 6011032286710901481210121841090176822301106 43 62
168 4277593255207257584473744857527025523957724 43 61
167 4270026508536613602272722063166358056200724 43 61
166 4236754831325615292754572925165231384576324 43 61
165 4236708500824894032575752304984280058076324 43 61
164 2426494758641569264741474629651468574946242 43 61
163 2426494706658461989505059891648566074946242 43 61
162 2181439476143709144546454419073416749341812 43 61
161 2147108966833950371150511730593386698017412 43 61
160 2106935294299775474599954745779924925396012 43 61
159 2106902281191302045590955402031911822096012 43 61
158 1416696065500088921662661298800055606966141 43 61
157 1414883972971911767319137671191792793884141 43 61
156 1010331096582278428458548248722856901330101 43 61
155 64515508991444322135253122344419980551546 41 59
154 61153138639139701434943410793193683135116 41 59
153 879878999661878204161402878166999878978 39 56
152 879348262202819129818921918202262843978 39 56
151 45958282654026060755706062045628285954 38 54
150 9835554837464633869683364647384555389 37 53
149 9596045768849458689868549488675406959 37 53
148 9505227132110846796976480112317225059 37 53
147 8467638770573174655564713750778367648 37 53
146 8183225575843802043402083485755223818 37 53
145 8145978316763435541455343676138795418 37 53
144 8140197799388539232329358839977910418 37 53
143 685120603841801367763108148306021586 36 52
142 602117076566221263362122665670711206 36 52
141 215355547165064584485460561745553512 36 51
140 106007162214551780087155412261700601 36 51
139 7748092041062101661012601402908477 34 49
138 6950267776950891441980596777620596 34 49
137 186838521546391111193645125838681 33 47
136 186162880909630434036909088261681 33 47
135 186162396111968171869111693261681 33 47
134 159171014284036444630482410171951 33 47
133 151998543003841676148300345899151 33 47
132 151998059721974171479127950899151 33 47
131 87653343665645377354656634335678 32 46
130 6297024459737003007379544207926 31 45
129 6292788805324353534235088872926 31 45
128 4572400421665334335661240042754 31 44
127 920049038842450054248830940029 30 43
126 863908970332451154233079809368 30 43
125 68123866829364346392866832186 29 42
124 60795457035659595653075459706 29 42
123 41618751128915351982115781614 29 41
122 31891884714945654941748819813 29 41
121 31417977787079697078777971413 29 41
120 31417972547345054374527971413 29 41
119 31416063242381218324236061413 29 41
118 31098164866494349466846189013 29 41
117 31029154725081318052745192013 29 41
116 24055999711386268311799955042 29 41
115 14626535770963836907753562641 29 41
114 10644461464435453446416444601 29 41
113 10233317539812221893571333201 29 41
112 775981910664202466019189577 27 39
111 775939410541000145014939577 27 39
110 775934282861868168282439577 27 39
109 691774458431323134854477196 27 39
108 618762750915151519057267816 27 39
107 613119004633151336400911316 27 39
106 18652160016866861006125681 26 37
105 15636166151988915166163651 26 37
104 15631144307799770344113651 26 37
103 8785720289021209820275878 25 36
102 679116049774477940611976 24 35
101 89750520757375702505798 23 33
100 89750054183338145005798 23 33
99 89707442492029424470798 23 33
98 89378795951815959787398 23 33
97 89373703300800330737398 23 33
96 89373235305150353237398 23 33
95 86985339391719393358968 23 33
94 86980677074747077608968 23 33
93 86502759048484095720568 23 33
92 86502714378987341720568 23 33
91 83732343311311334323738 23 33
90 83208975695159657980238 23 33
89 83208405647274650480238 23 33
88 4185459800880089545814 22 31
87 3441731791881971371443 22 31
86 2015496835005386945102 22 31
85 1073077634334367703701 22 31
84 1071727595775957271701 22 31
83 69258642177124685296 20 29
82 66819814955941891866 20 29
81 61034375000057343016 20 29
80 22192753388335729122 20 28
79 1877026246426207781 19 27
78 1872666725276662781 19 27
77 1872168528258612781 19 27
76 1560890621260980651 19 27
75 1560393839383930651 19 27
74 1527447408047447251 19 27
73 67546323432364576 17 25
72 62596751915769526 17 25
71 28453146364135482 17 24
70 28012639493621082 17 24
69 25856101110165852 17 24
68 25851377577315852 17 24
67 8671162112611768 16 23
66 8066449229446608 16 23
65 8061113993111608 16 23
64 658768979867856 15 22
63 653311040113356 15 22
62 473696969696374 15 21
61 473643646346374 15 21
60 449933929339944 15 21
59 449488282884944 15 21
58 445389595983544 15 21
57 445384969483544 15 21
56 445336272633544 15 21
55 378573424375873 15 21
54 374476969674473 15 21
53 301537434735103 15 21
52 279119383911972 15 21
51 206903565309602 15 21
50 206725444527602 15 21
49 202304515403202 15 21
48 176265757562671 15 21
47 176071838170671 15 21
46 172849181948271 15 21
45 172102080201271 15 21
44 132412434214231 15 21
43 107793080397701 15 21
42 107745787547701 15 21
41 103824717428301 15 21
40 103191131191301 15 21
39 7730173710377 13 19
38 6989062609896 13 19
37 6982578752896 13 19
36 6694978794966 13 19
35 6648130318466 13 19
34 6643369633466 13 19
33 6105769675016 13 19
32 2228261628222 13 18
31 12185058121 11 15
30 12114741121 11 15
29 6761551676 10 15
28 2893553982 10 14
27 2596886952 10 14
26 2512882152 10 14
25 836181638 9 13
24 836131638 9 13
23 831868138 9 13
22 831333138 9 13
21 808656808 9 13
20 65977956 8 12
19 47633674 8 11
18 30322303 8 11
17 27711772 8 11
16 10400401 8 11
15 10088001 8 11
14 18881 5 7
13 15751 5 7
12 1221 4 5
11 676 3 5
10 626 3 5
9 282 3 4
8 252 3 4
7 88 2 3
6 6 1 2
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 6A029963 L base 10
L base 6
Next > 10^23
118 Prime! 3659923380767083329956323 29
117 33461025859695852016433 23 29
116 32046696937973969664023 23 29
115 31442983675957638924413 23 29
114 27596928275057282969572 23 29
113 26387697060106079678362 23 29
112 4800062971441792600084 22 28
111 3951300420330240031593 22 28
110 3228607293993927068223 22 28
109 954705277777772507459 21 27
108 698624223676322426896 21 27
107 515942802363208249515 21 27
106 413110328121823011314 21 27
105 184042927656729240481 21 27
104 101486113646311684101 21 26
103 80695452588525459608 20 26
102 5761547475747451675 19 25
101 5283511046401153825 19 25
100 617599427724995716 18 23
99 76123829292832167 17 22
98 65332462626423356 17 22
97 63799978687999736 17 22
96 34283490709438243 17 22
95 14459868686895441 17 21
94 14441050405014441 17 21
93 12907568886570921 17 21
92 8020863443680208 16 21
91 5796663883666975 16 21
90 2806592662956082 16 20
89 900893585398009 15 20
88 596437282734695 15 19
87 585789323987585 15 19
86 521151929151125 15 19
85 480680444086084 15 19
84 422383797383224 15 19
83 395921848129593 15 19
82 389019363910983 15 19
81 359630212036953 15 19
80 309491626194903 15 19
79 285666464666582 15 19
78 Prime! 15525983895255115 19
77 80839044093808 14 18
76 51910622601915 14 18
75 41443999934414 14 18
74 10268799786201 14 17
73 9766560656679 13 17
72 8288882888828 13 17
71 6873812183786 13 17
70 3695202025963 13 17
69 3693222223963 13 17
68 3691422241963 13 17
67 3666926296663 13 17
66 1808482848081 13 16
65 75535653557 11 14
64 71771717717 11 14
63 61662426616 11 14
62 18013531081 11 14
61 12482428421 11 13
60 Prime! 1127151721111 13
59 8801331088 10 13
58 7786556877 10 13
57 7111881117 10 13
56 4368778634 10 13
55 3733113373 10 13
54 342050243 9 11
53 310393013 9 11
52 290222092 9 11
51 Prime! 1081518019 11
50 104888401 9 11
49 103656301 9 11
48 24466442 8 10
47 15266251 8 10
46 9081809 7 9
45 8164618 7 9
44 6983896 7 9
43 6934396 7 9
42 6901096 7 9
41 5799975 7 9
40 5766675 7 9
39 5733375 7 9
38 5482845 7 9
37 5433345 7 9
36 5400045 7 9
35 5182815 7 9
34 5100015 7 9
33 4849484 7 9
32 4598954 7 9
31 4565654 7 9
30 4516154 7 9
29 4298924 7 9
28 4265624 7 9
27 4232324 7 9
26 3097903 7 9
25 1867681 7 9
24 909909 6 8
23 808808 6 8
22 168861 6 7
21 74647 5 7
20 39893 5 6
19 22022 5 6
18 7777 4 6
17 7667 4 5
16 1441 4 5
15 868 3 4
14 777 3 4
13 434 3 4
12 343 3 4
11 Prime! 1913 3
10 141 3 3
9 111 3 3
8 55 2 3
7 Prime! 71 2
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 7A029964 L base 10
L base 7
Next > 10^23
81 67949117406960471194976 23 28
80 65437371449594417373456 23 27
79 47019576850605867591074 23 27
78 29627836901610963872692 23 27
77 24392712895759821729342 23 27
76 20722521562726512522702 23 27
75 Prime! 1779776751979157677977123 27
74 8421198978888798911248 22 26
73 942538532686235835249 21 25
72 755667017939710766557 21 25
71 617161162878261161716 21 25
70 507598924909429895705 21 25
69 400003717000717300004 21 25
68 397793140060041397793 21 25
67 240176399252993671042 21 25
66 22244818422481844222 20 23
65 9100681853581860019 19 23
64 7869047624267409687 19 23
63 99739047074093799 17 21
62 98709855955890789 17 21
61 67122911011922176 17 20
60 65045053335054056 17 20
59 42074205350247024 17 20
58 7584718778174857 16 19
57 3179862222689713 16 19
56 229716363617922 15 17
55 215821424128512 15 17
54 208063959360802 15 17
53 201946010649102 15 17
52 85161755716158 14 17
51 74194966949147 14 17
50 49929477492994 14 17
49 23419766791432 14 16
48 8868067608688 13 16
47 6750989890576 13 16
46 4158563658514 13 15
45 2928299928292 13 15
44 2745382835472 13 15
43 2680120210862 13 154
42 2451956591542 13 15
41 2264092904622 13 15
40 1269880889621 13 15
39 775350053577 12 15
38 426970079624 12 14
37 95365056359 11 13
36 91023932019 11 13
35 Prime! 9075070570911 13
34 75431213457 11 13
33 75016161057 11 13
32 65796069756 11 13
31 64454545446 11 13
30 61454945416 11 13
29 45862226854 11 13
28 40130703104 11 13
27 25699499652 11 13
26 858474858 9 11
25 657494756 9 11
24 638828836 9 11
23 485494584 9 11
22 466828664 9 11
21 230474032 9 10
20 61255216 8 10
19 Prime! 94707497 9
18 6958596 7 9
17 6597956 7 9
16 4602064 7 8
15 2137312 7 8
14 65656 5 6
13 Prime! 165615 5
12 292 3 3
11 242 3 3
10 171 3 3
9 121 3 3
8 8 1 2
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 8 (octal)A029804 L base 10
L base 8
Next > 10^34
131 6091280052696093663906962500821906 34 38
130 1141897415190856226580915147981411 34 37
129 994090604572440313044275406090499 33 37
128 858037680965763515367569086730858 33 37
127 835523283332531656135233382325538 33 37
126 587617843046963898369640348716785 33 37
125 564341093237119818911732390143465 33 37
124 355309407484416525614484704903553 33 37
123 89879768957194388349175986797898 32 36
122 38525491344366033066344319452583 32 35
121 17181377425940999904952477318171 32 35
120 3792033197162477742617913302973 31 34
119 3377242440477033307740442427733 31 34
118 2903795477478606068747745973092 31 34
117 1949700108422995992248010079491 31 34
116 98444861536975557963516844489 29 33
115 79443858725719191752785834497 29 33
114 68607705200272427200250770686 29 32
113 62119978192296969229187991126 29 32
112 36386515691205650219651568363 29 32
111 20466353976385158367935366402 29 32
110 2674972302079669702032794762 28 31
109 619057787673525376787750916 27 30
108 138668092301868103290866831 27 29
107 107184009820444028900481701 27 29
106 82268662917644671926686228 26 29
105 41155431112055021113455114 26 29
104 9504411213036303121144059 25 28
103 9502917646378736467192059 25 28
102 9500465760922290675640059 25 28
101 6857776528536358256777586 25 28
100 3760849013081803109480673 25 28
99 2091103570615160753011902 25 27
98 1646819988303038899186461 25 27
97 890170268088880862071098 24 27
96 315610027864468720016513 24 27
95 39752656623032665625793 23 26
94 36258340143534104385263 23 25
93 Prime! 3412570349535943075214323 25
92 17395259698289695259371 23 25
91 15863125024242052136851 23 25
90 7393237064774607323937 22 25
89 2503498805115088943052 22 24
88 579927810111018729975 21 23
87 556362998454899263655 21 23
86 552868393727393868255 21 23
85 494635531909135536494 21 23
84 473317002010200713374 21 23
83 379080765242567080973 21 23
82 375586160515061685573 21 23
81 375183597404795381573 21 23
80 371911868919868119173 21 23
79 202693712161217396202 21 23
78 77580854944945808577 20 23
77 44643103022030134644 20 22
76 32300361188116300323 20 22
75 9843207767677023489 19 22
74 3800003150513000083 19 21
73 3676077166617706763 19 21
72 2650626939396260562 19 21
71 2445420079700245442 19 21
70 1219071169611709121 19 21
69 136053358853350631 18 19
68 105080469964080501 18 19
67 96876827472867869 17 19
66 84199148484199148 17 19
65 84172361516327148 17 19
64 70333341514333307 17 19
63 57234017271043275 17 19
62 45576210301267554 17 19
61 45534430503443554 17 19
60 33239024742093233 17 19
59 685854414458586 15 17
58 683113474311386 15 17
57 666551535155666 15 17
56 393073414370393 15 17
55 359934111439953 15 17
54 224785646587422 15 16
53 185850999058581 15 16
52 112745383547211 15 16
51 34926999962943 14 15
50 28719555591782 14 15
49 13994688649931 14 15
48 7712150512177 13 15
47 5853143413585 13 15
46 5227529257225 13 15
45 390894498093 12 13
44 294378873492 12 13
43 94466666449 11 13
42 94029892049 11 13
41 20855555802 11 12
40 4637337364 10 11
39 4480880844 10 11
38 4424994244 10 11
37 2464554642 10 11
36 1820330281 10 11
35 799535997 9 10
34 719848917 9 10
33 532898235 9 10
32 130535031 9 9
31 55366355 8 9
30 4198914 7 8
29 Prime! 19707917 7
28 1935391 7 7
27 Prime! 14969417 7
26 660066 6 7
25 628826 6 7
24 207702 6 6
23 30303 5 5
22 Prime! 301035 5
21 26662 5 5
20 26462 5 5
19 Prime! 133315 5
18 13131 5 5
17 8778 4 5
16 3663 4 4
15 585 3 4
14 414 3 3
13 Prime! 3733 3
12 333 3 3
11 292 3 3
10 121 3 3
9 9 1 2
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 9A029965 L base 10
L base 9
Next > 10^23
75 7623722153663512273267 22 23
74 4997878480660848787994 22 23
73 3014849211991129484103 22 23
72 1895043293663923405981 22 23
71 1685380415005140835861 22 23
70 104618510424015816401 21 21
69 89349349588594394398 20 21
68 82148829699692884128 20 21
67 53293648433484639235 20 21
66 547906983389609745 18 19
65 194216405504612491 18 19
64 190076027720670091 18 19
63 14802554345520841 17 17
62 13577478487477531 17 17
61 11199701210799111 17 17
60 11111059395011111 17 17
59 5987078778707895 16 17
58 4782537117352874 16 17
57 149819212918941 15 15
56 149285434582941 15 15
55 101904010409101 15 15
54 42143900934124 14 15
53 41275222257214 14 15
52 2081985891802 13 13
51 2024099904202 13 13
50 2005542455002 13 13
49 Prime! 140023232004113 13
48 827362263728 12 13
47 9565335659 10 11
46 8901111098 10 11
45 5435665345 10 11
44 382000283 9 9
43 232000232 9 9
42 181434181 9 9
41 167191761 9 9
40 65666656 8 9
39 3360633 7 7
38 3303033 7 7
37 3171713 7 7
36 3163613 7 7
35 3122213 7 7
34 3114113 7 7
33 Prime! 31060137 7
32 2450542 7 7
31 2442442 7 7
30 2434342 7 7
29 2401042 7 7
28 1885881 7 7
27 1877781 7 7
26 1828281 7 7
25 1721271 7 7
24 1713171 7 7
23 1540451 7 7
22 626626 6 7
21 50605 5 5
20 42324 5 5
19 27472 5 5
18 25752 5 5
17 6886 4 5
16 656 3 3
15 646 3 3
14 555 3 3
13 464 3 3
12 Prime! 3733 3
11 282 3 3
10 Prime! 1913 3
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 11A029966 L base 10
L base 11
Next > 10^21
83 903253059636950352309 21 21
82 771341832818238143177 21 21
81 686833076121670338686 21 21
80 671136738666837631176 21 20
79 7861736017106371687 19 19
78 6411682614162861146 19 19
77 4244691467641964424 19 18
76 64224652625642246 17 17
75 62712119691121726 17 17
74 56831729892713865 17 17
73 56681764446718665 17 17
72 54470642224607445 17 17
71 463906656609364 15 15
70 259799383997952 15 14
69 251569181965152 15 14
68 218254595452812 15 14
67 218210353012812 15 14
66 218053292350812 15 14
65 4798641468974 13 13
64 2926072706292 13 12
63 2909278729092 13 12
62 42521012524 11 11
61 39453235493 11 11
60 39276067293 11 11
59 Prime! 9994549999 9
58 Prime! 9981118999 9
57 537181735 9 9
56 492080294 9 9
55 489525984 9 9
54 362151263 9 9
53 356777653 9 9
52 8844488 7 7
51 8832388 7 7
50 8820288 7 7
49 8758578 7 7
48 8746478 7 7
47 8734378 7 7
46 8722278 7 7
45 8710178 7 7
44 7292927 7 7
43 7280827 7 7
42 5741475 7 7
41 5667665 7 7
40 5655565 7 7
39 5643465 7 7
38 4593954 7 7
37 4581854 7 7
36 4422244 7 7
35 4410144 7 7
34 4348434 7 7
33 3372733 7 7
32 3360633 7 7
31 3298923 7 7
30 Prime! 32868237 7
29 3274723 7 7
28 3262623 7 7
27 2968692 7 7
26 2956592 7 7
25 75157 5 5
24 63936 5 5
23 52825 5 5
22 49294 5 5
21 40504 5 5
20 Prime! 381835 5
19 26962 5 5
18 909 3 3
17 898 3 3
16 Prime! 7873 3
15 676 3 3
14 565 3 3
13 454 3 3
12 343 3 3
11 232 3 3
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 12A029967 L base 10
L base 12
Next > 10^21
61 302002264282462200203 21 19
60 283631008131800136382 21 19
59 216811149242941118612 21 19
58 52975769933996757925 20 19
57 3967113331333117693 19 18
56 3345454646464545433 19 18
55 1834592905092954381 19 17
54 1312161375731612131 19 17
53 1310127138317210131 19 17
52 926617966669716629 18 17
51 418955743347559814 18 17
50 411528847748825114 18 17
49 90145891619854109 17 16
48 16330182728103361 17 16
47 8330107227010338 16 15
46 5128288228828215 16 15
45 1643600330063461 16 15
44 62218411481226 14 13
43 10171466417101 14 13
42 4538684868354 13 12
41 357496694753 12 11
40 122507705221 12 11
39 73183838137 11 11
38 57644144675 11 10
37 50992729905 11 10
36 36265856263 11 10
35 25712321752 11 10
34 1393223931 10 9
33 796212697 9 9
32 Prime! 7131713179 9
31 520020025 9 9
30 293373392 9 8
29 139979931 9 8
28 133373331 9 8
27 9963699 7 7
26 8364638 7 7
25 5641465 7 7
24 3192913 7 7
23 646646 6 6
22 88888 5 5
21 43934 5 5
20 35953 5 5
19 8008 4 4
18 1111 4 3
17 Prime! 7973 3
16 737 3 3
15 676 3 3
14 616 3 3
13 555 3 3
12 Prime! 1813 3
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 13A029968 L base 10
L base 13
Next > 10^21
86 995165177898771561599 21 19
85 Prime! 97001548646468451007921 19
84 960085137626731580069 21 19
83 958539908323809935859 21 19
82 931953637343736359139 21 19
81 832587648262846785238 21 19
80 364370458757854073463 21 19
79 292503721141127305292 21 19
78 277258880242088852772 21 19
77 162238140040041832261 21 19
76 Prime! 752085939293958025719 17
75 5544882623262884455 19 17
74 4002414299924142004 19 17
73 3976149369639416793 19 17
72 3898701537351078983 19 17
71 2832604939394062382 19 17
70 1836905795975096381 19 17
69 49164413731446194 17 15
68 45850453835405854 17 15
67 37079407070497073 17 15
66 7273324774233727 16 15
65 672804838408276 15 14
64 637013161310736 15 14
63 237923878329732 15 13
62 235604838406532 15 13
61 60808311380806 14 13
60 54324199142345 14 13
59 1624981894261 13 11
58 1199309039911 13 11
57 789679976987 12 11
56 22087878022 11 10
55 8390660938 10 9
54 8381551838 10 9
53 7497557947 10 9
52 7488448847 10 9
51 6933223396 10 9
50 6924114296 10 9
49 4378778734 10 9
48 4369669634 10 9
47 3814444183 10 9
46 3805335083 10 9
45 3071001703 10 9
44 952404259 9 9
43 668666866 9 8
42 656353656 9 8
41 62611626 8 7
40 47099074 8 7
39 44166144 8 7
38 33299233 8 7
37 23877832 8 7
36 23177132 8 7
35 20944902 8 7
34 20244202 8 7
33 13055031 8 7
32 10122101 8 7
31 8864688 7 7
30 2906092 7 6
29 2832382 7 6
28 2713172 7 6
27 2377732 7 6
26 311113 6 5
25 56265 5 5
24 26362 5 4
23 25452 5 4
22 24542 5 4
21 8778 4 4
20 6776 4 4
19 1111 4 3
18 Prime! 7973 3
17 666 3 3
16 575 3 3
15 444 3 3
14 Prime! 3533 3
13 Prime! 3133 3
12 222 3 3
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 14A029969 L base 10
L base 14
Next >10^21
78 756517966373669715657 21 19
77 535729030313030927535 21 19
76 531011782080287110135 21 19
75 59380193522539108395 20 18
74 59236342599524363295 20 18
73 26916102000020161962 20 17
72 15595183733738159551 20 17
71 15319521066012591351 20 17
70 7327284858584827237 19 17
69 7209611033301169027 19 17
68 6158981849481898516 19 17
67 6114506601066054116 19 17
66 6005359623269535006 19 17
65 3737334250524337373 19 17
64 3545494238324945453 19 17
63 546546033330645645 18 16
62 78325277777252387 17 15
61 69580792329708596 17 15
60 68300282528200386 17 15
59 57047363236374075 17 15
58 26072218381227062 17 15
57 24514444744441542 17 15
56 13955648684655931 17 15
55 5902037117302095 16 14
54 765611080116567 15 13
53 756559989955657 15 13
52 692021131120296 15 13
51 611552272255116 15 13
50 475794747497574 15 13
49 306149949941603 15 13
48 253675545576352 15 13
47 236070676070632 15 13
46 5813343433185 13 12
45 5542179712455 13 12
44 5530138310355 13 12
43 5507474747055 13 12
42 5105070705015 13 12
41 3984321234893 13 11
40 2428022208242 13 11
39 1098445448901 13 11
38 1031186811301 13 11
37 695256652596 12 11
36 549905509945 12 11
35 518032230815 12 11
34 508628826805 12 11
33 17085058071 11 9
32 Prime! 1420333024111 9
31 11652825611 11 9
30 10476867401 11 9
29 6758008576 10 9
28 5736116375 10 9
27 595121595 9 8
26 564303465 9 8
25 535505535 9 8
24 9813189 7 7
23 9578759 7 7
22 Prime! 90464097 7
21 546645 6 6
20 420024 6 5
19 59095 5 5
18 39593 5 5
17 1111 4 3
16 999 3 3
15 858 3 3
14 717 3 3
13 464 3 3
12 323 3 3
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 15A029970 L base 10
L base 15
Next > 10^20
73 89551457844875415598 20 17
72 6747920044400297476 19 17
71 6736942564652496376 19 17
70 4038582985892858304 19 16
69 427791895598197724 18 15
68 194176722227671491 18 15
67 74940172027104947 17 15
66 Prime! 7471318474813174717 15
65 74712906560921747 17 15
64 74712663536621747 17 15
63 284111151111482 15 13
62 283652313256382 15 13
61 141527282725141 15 13
60 42629999992624 14 12
59 40700399300704 14 12
58 8004830384008 13 11
57 7485535355847 13 11
56 7305480845037 13 11
55 7073218123707 13 11
54 7073152513707 13 11
53 6908732378096 13 11
52 6907268627096 13 11
51 6799415149976 13 11
50 6637917197366 13 11
49 6624883884266 13 11
48 6624024204266 13 11
47 6498409048946 13 11
46 6498343438946 13 11
45 5938567658395 13 11
44 1131877781311 13 11
43 1131018101311 13 11
42 692465564296 12 11
41 615221122516 12 11
40 20281518202 11 9
39 17406960471 11 9
38 8083223808 10 9
37 8052662508 10 9
36 8050880508 10 9
35 2118008112 10 8
34 69455496 8 7
33 47999974 8 7
32 39399393 8 7
31 28300382 8 7
30 26144162 8 7
29 17577571 8 7
28 527725 6 5
27 515515 6 5
26 489984 6 5
25 477774 6 5
24 465564 6 5
23 67576 5 5
22 60106 5 5
21 25552 5 4
20 23632 5 4
19 2772 4 3
18 1551 4 3
17 979 3 3
16 949 3 3
15 Prime! 9193 3
14 888 3 3
13 858 3 3
12 828 3 3
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 16A029731 L base 10
L base 16
Next > 10^35
143 78894191945563376367336554919149887 35 29
142 67080932508181062626018180523908076 35 29
141 63835882500017943434971000528853836 35 29
140 63494339670590336663309507693349436 35 29
139 57486792197841346664314879129768475 35 29
138 46494289039985405650458993098249464 35 29
137 36453210513649714141794631501235463 35 29
136 25295130572966082928066927503159252 35 29
135 17193090890651737173715609809039171 35 29
134 589179652669993373399966256971985 33 28
133 324193060418058060850814060391423 33 27
132 322434305921054020450129503434223 33 27
131 188980399889523060325988993089881 33 27
130 157124568577706949607775865421751 33 27
129 153570961886167878761688169075351 33 27
128 74310782571520833802517528701347 32 27
127 47204048169521688612596184040274 32 27
126 9578569814271350531724189658759 31 26
125 7308855736123322233216375588037 31 26
124 1097029772441563651442779207901 31 25
123 494506253843744447348352605494 30 25
122 94694284038931313983048249649 29 25
121 94635334973676267637943353649 29 25
120 92167013075480608457031076129 29 25
119 17173681623264946232618637171 29 24
118 4526239847945445497489326254 28 23
117 4374175479923993299745714734 28 23
116 2092577007449999447007752902 28 23
115 875288502888989888205882578 27 23
114 374178087384212483780871473 27 23
113 319895202367858763202598913 27 23
112 107761099424686424990167701 27 22
111 107527175676494676571725701 27 22
110 43231887066299266078813234 26 22
109 37264989541299214598946273 26 22
108 9133129628211128269213319 25 21
107 1846781136065606311876481 25 21
106 Prime! 184423805878987850832448125 21
105 1829860070497940700689281 25 21
104 1013945256196916525493101 25 20
103 66346948489298484964366 23 19
102 55582430128882103428555 23 19
101 51959301115851110395915 23 19
100 47844728597079582744874 23 19
99 47272007451015470027274 23 19
98 42001490723332709410024 23 19
97 36039109398989390193063 23 19
96 34570154169596145107543 23 19
95 34175825152525152857143 23 19
94 28527697711011779672582 23 19
93 21471020918081902017412 23 19
92 17322666253735266622371 23 19
91 15673605260306250637651 23 19
90 873954892151298459378 21 18
89 264605616858616506462 21 17
88 180766294494492667081 21 17
87 136228674727476822631 21 17
86 134132582494285231431 21 17
85 109640971252179046901 21 17
84 105086879868978680501 21 17
83 70701884511548810707 20 17
82 41317967000076971314 20 17
81 4616159308039516164 19 16
80 3884425716175244883 19 16
79 1137081002001807311 19 15
78 1118494603064948111 19 15
77 887358331133853788 18 15
76 535873916619378535 18 15
75 373019805508910373 18 15
74 70667820502876607 17 14
73 64634327472343646 17 14
72 32633196169133623 17 14
71 32000428082400023 17 14
70 5099347667439905 16 14
69 1668739779378661 16 13
68 816346555643618 15 13
67 522013020310225 15 13
66 509538666835905 15 13
65 Prime! 39792215122979315 13
64 45113388331154 14 12
63 17262755726271 14 11
62 14315822851341 14 11
61 7888195918887 13 11
60 6694367634966 13 11
59 Prime! 340568486504313 11
58 2692667662962 13 11
57 2424058504242 13 11
56 1806872786081 13 11
55 1631645461361 13 11
54 1278169618721 13 11
53 390189981093 12 10
52 56702120765 11 9
51 51113531115 11 9
50 45961216954 11 9
49 43836363834 11 9
48 39762526793 11 9
47 32442924423 11 9
46 30144644103 11 9
45 28779897782 11 9
44 28586268582 11 9
43 26896769862 11 9
42 247969742 9 7
41 241090142 9 7
40 Prime! 1900800919 7
39 161131161 9 7
38 119919911 9 7
37 94544549 8 7
36 94355349 8 7
35 90999909 8 7
34 67433476 8 7
33 9616169 7 6
32 6487846 7 6
31 5614165 7 6
30 2485842 7 6
29 1612161 7 6
28 845548 6 5
27 749947 6 5
26 666666 6 5
25 512215 6 5
24 333333 6 5
23 Prime! 986895 5
22 96369 5 5
21 Prime! 940495 5
20 90209 5 5
19 41514 5 4
18 39593 5 4
17 3003 4 3
16 1991 4 3
15 979 3 3
14 Prime! 7873 3
13 626 3 3
12 Prime! 3533 3
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 17A097855 L base 10
L base 17
Next > 10^20
70 4552204672764022554 19 16
69 2552577177717752552 19 15
68 1561203188813021651 19 15
67 763504480084405367 18 15
66 395414871178414593 18 15
65 327224207702422723 18 15
64 174670389983076471 18 15
63 85437364146373458 17 14
62 47548262526284574 17 14
61 41285701710758214 17 14
60 40101963636910104 17 14
59 29287621712678292 17 14
58 20378349094387302 17 14
57 7351755005571537 16 13
56 6905270220725096 16 13
55 965201404102569 15 13
54 406631878136604 15 12
53 19038433483091 14 11
52 14705022050741 14 11
51 4244405044424 13 11
50 650880088056 12 10
49 494280082494 12 10
48 493533335394 12 10
47 98794149789 11 9
46 91792829719 11 9
45 77991919977 11 9
44 72603630627 11 9
43 68921312986 11 9
42 58802720885 11 9
41 57431913475 11 9
40 30873037803 11 9
39 2038558302 10 8
38 335929533 9 7
37 280535082 9 7
36 229232922 9 7
35 212313212 9 7
34 208373802 9 7
33 207535702 9 7
32 124454421 9 7
31 123616321 9 7
30 103595301 9 7
29 102757201 9 7
28 31744713 8 7
27 8837388 7 6
26 4165614 7 6
25 1388831 7 5
24 335533 6 5
23 256652 6 5
22 177771 6 5
21 94249 5 5
20 61416 5 4
19 4554 4 3
18 2882 4 3
17 989 3 3
16 818 3 3
15 767 3 3
14 545 3 3
13 494 3 3
12 252 3 2
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 18A248889 L base 10
L base 18
Next > 10^20
83 41470196888869107414 20 16
82 5827580384830857285 19 15
81 5812958640468592185 19 15
80 5725600893980065275 19 15
79 5052817248427182505 19 15
78 4804809688869084084 19 15
77 3497509383839057943 19 15
76 3489855513155589843 19 15
75 3377352952592537733 19 15
74 2528468040408648252 19 15
73 2525541666661455252 19 15
72 2432426921296242342 19 15
71 2324074260624704232 19 15
70 1884584402044854881 19 15
69 1129798206028979211 19 15
68 104737165561737401 18 14
67 18245601610654281 17 13
66 11247779597774211 17 13
65 4725393553935274 16 13
64 4671431331341764 16 13
63 3496774224776943 16 13
62 1511668448661151 16 13
61 427740777047724 15 12
60 385281878182583 15 12
59 56203688630265 14 11
58 35334455443353 14 11
57 5764436344675 13 11
56 3968412148693 13 11
55 3376963696733 13 10
54 2557615167552 13 10
53 188833338881 12 9
52 Prime! 7928828829711 9
51 69675357696 11 9
50 59388288395 11 9
49 58813031885 11 9
48 26965056962 11 9
47 14969696941 11 9
46 387191783 9 7
45 Prime! 3864546839 7
44 385717583 9 7
43 376222673 9 7
42 327696723 9 7
41 326959623 9 7
40 221050122 9 7
39 220313022 9 7
38 191010191 9 7
37 118919811 9 7
36 88844888 8 7
35 55499455 8 7
34 54411445 8 7
33 39388393 8 7
32 Prime! 18323817 5
31 1403041 7 5
30 1254521 7 5
29 981189 6 5
28 859958 6 5
27 782287 6 5
26 583385 6 5
25 262262 6 5
24 69996 5 4
23 46664 5 4
22 23332 5 4
21 3773 4 3
20 2112 4 3
19 1661 4 3
18 848 3 3
17 686 3 3
16 595 3 3
15 505 3 3
14 343 3 3
13 323 3 2
12 171 3 2
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 19A248899 L base 10
L base 19
Next > 10^20
60 11330422577522403311 20 15
59 9611176039306711169 19 15
58 9333120815180213339 19 15
57 8705115152515115078 19 15
56 8507775490945777058 19 15
55 7401130704070311047 19 15
54 7382719398939172837 19 15
53 6510099759579900156 19 15
52 5846194156514916485 19 15
51 4502146351536412054 19 15
50 4306351929291536034 19 15
49 3695653224223565963 19 15
48 41530875757803514 17 13
47 33670675157607633 17 13
46 30676982028967603 17 13
45 21858850305885812 17 13
44 18057661216675081 17 13
43 10365316861356301 17 13
42 8328654774568238 16 13
41 2794478998744972 16 13
40 2696617447166962 16 13
39 6976862686796 13 11
38 6959926299596 13 11
37 246025520642 12 9
36 234595595432 12 9
35 139103301931 12 9
34 127673376721 12 9
33 121791197121 12 9
32 96060106069 11 9
31 87161116178 11 9
30 67269596276 11 9
29 62558085526 11 9
28 47069796074 11 9
27 863828368 9 7
26 857383758 9 7
25 666909666 9 7
24 650767056 9 7
23 467535764 9 7
22 453848354 9 7
21 Prime! 3300500339 7
20 Prime! 1552925519 7
19 2211122 7 5
18 1897981 7 5
17 Prime! 15515517 5
16 864468 6 5
15 432234 6 5
14 1771 4 3
13 838 3 3
12 666 3 3
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 20A250408 L base 10
L base 20
Next > 10^20
85 105878013310878501 18 14
84 71874813431847817 17 13
83 71831895259813817 17 13
82 69517556065571596 17 13
81 69515054645051596 17 13
80 69515035653051596 17 13
79 67316423732461376 17 13
78 67316404740461376 17 13
77 67314157075141376 17 13
76 67182731613728176 17 13
75 67180087178008176 17 13
74 2533637117363352 16 12
73 2533401331043352 16 12
72 115629444926511 15 11
71 115488939884511 15 11
70 115482777284511 15 11
69 115482161284511 15 11
68 115238181832511 15 11
67 112989686989211 15 11
66 112983848389211 15 11
65 112739252937211 15 11
64 112733414337211 15 11
63 112733090337211 15 11
62 96757333375769 14 11
61 96544000044569 14 11
60 92862200226829 14 11
59 86356300365368 14 11
58 82885700758828 14 11
57 82868066086828 14 11
56 76185311358167 14 11
55 76160000006167 14 11
54 72697077079627 14 11
53 72691155119627 14 11
52 72678611687627 14 11
51 72279011097227 14 11
50 68857077075886 14 11
49 68851155115886 14 11
48 68838611683886 14 11
47 62296044069226 14 11
46 62089899898026 14 11
45 58667622676685 14 11
44 58661700716685 14 11
43 58456044065485 14 11
42 54985444458945 14 11
41 48479922997484 14 11
40 48473077037484 14 11
39 44778355387744 14 11
38 44584411448544 14 11
37 38283622638283 14 11
36 38072044027083 14 11
35 28095922959082 14 11
34 14102600620141 14 11
33 10614366341601 14 11
32 355746647553 12 9
31 355110011553 12 9
30 334843348433 12 9
29 334495594433 12 9
28 1444884441 10 8
27 1919191 7 5
26 Prime! 19171917 5
25 1915191 7 5
24 1913191 7 5
23 1788871 7 5
22 1786871 7 5
21 1784871 7 5
20 30303 5 4
19 22722 5 4
18 20202 5 4
17 12621 5 4
16 10101 5 4
15 7117 4 3
14 6776 4 3
13 6556 4 3
12 252 3 2
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 21 L base 10
L base 21
Next > 10^20
105 54022659711795622045 20 15
104 53479116322361197435 20 15
103 52695119366391159625 20 15
102 32056623722732665023 20 15
101 28130792022029703182 20 15
100 4889312521252139884 19 15
99 2969386212126839692 19 14
98 2745161405041615472 19 14
97 2407431827281347042 19 14
96 2242598563658952422 19 14
95 881866612216668188 18 14
94 478303605506303874 18 14
93 99703025352030799 17 13
92 92613604440631629 17 13
91 82993441914439928 17 13
90 Prime! 7835773464377538717 13
89 49126258185262194 17 13
88 44506740304760544 17 13
87 39823252625232893 17 13
86 38275424142457283 17 13
85 37022794049722073 17 13
84 32924868186842923 17 13
83 28590052425009582 17 13
82 23530366466303532 17 13
81 13894950405949831 17 13
80 10091495959419001 17 13
79 8628788338878268 16 13
78 6388598118958836 16 12
77 6116292442926116 16 12
76 4690638558360964 16 12
75 2369324774239632 16 12
74 2277486006847722 16 12
73 881910212019188 15 12
72 338734909437833 15 11
71 289911959119982 15 11
70 235023626320532 15 11
69 217306686603712 15 11
68 207449545944702 15 11
67 128197515791821 15 11
66 90660677606609 14 11
65 59139544593195 14 11
64 27210988901272 14 11
63 8816817186188 13 10
62 2596329236952 13 10
61 440827728044 12 9
60 303880088303 12 9
59 98157575189 11 9
58 79375957397 11 9
57 66969496966 11 9
56 54482928445 11 9
55 8087337808 10 8
54 6801661086 10 8
53 4672002764 10 8
52 4475555744 10 8
51 2130880312 10 8
50 1696776961 10 7
49 1418668141 10 7
48 1378448731 10 7
47 900535009 9 7
46 620282026 9 7
45 490222094 9 7
44 427020724 9 7
43 423484324 9 7
42 409161904 9 7
41 340373043 9 7
40 293080392 9 7
39 68933986 8 6
38 67222276 8 6
37 66988966 8 6
36 46422464 8 6
35 28355382 8 6
34 25622652 8 6
33 6612166 7 6
32 6563656 7 6
31 6233326 7 6
30 3979793 7 5
29 3735373 7 5
28 3710173 7 5
27 2379732 7 5
26 1844481 7 5
25 845548 6 5
24 672276 6 5
23 203302 6 5
22 87978 5 4
21 61116 5 4
20 989 3 3
19 Prime! 7573 3
18 505 3 3
17 484 3 3
16 242 3 2
15 88 2 2
14 66 2 2
13 44 2 2
12 22 2 2
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 22 L base 10
L base 22
Next > 10^20
72 74312996511569921347 20 15
71 72673811666611837627 20 15
70 72413971722717931427 20 15
69 72099151411415199027 20 15
68 71670186944968107617 20 15
67 7260302291922030627 19 15
66 150917442244719051 18 13
65 142054031130450241 18 13
64 95881569296518859 17 13
63 93895494749459839 17 13
62 90814147874141809 17 13
61 89233276667233298 17 13
60 89079044444097098 17 13
59 83218001210081238 17 13
58 75144757675744157 17 13
57 71360959395906317 17 13
56 19291952825919291 17 13
55 17467113931176471 17 13
54 574128141821475 15 11
53 573859747958375 15 11
52 567425595524765 15 11
51 495172868271594 15 11
50 276695727596672 15 11
49 232474888474232 15 11
48 145410535014541 15 11
47 100357979753001 15 11
46 1963232323691 13 10
45 1389924299831 13 10
44 1162319132611 13 9
43 93648984639 11 9
42 77263836277 11 9
41 77185658177 11 9
40 Prime! 7529363925711 9
39 18486568481 11 8
38 1297007921 10 7
37 1285665821 10 7
36 575595575 9 7
35 575232575 9 7
34 472181274 9 7
33 399080993 9 7
32 133727331 9 7
31 59155195 8 6
30 5109015 7 5
29 5048405 7 5
28 2968692 7 5
27 2846482 7 5
26 2408042 7 5
25 2359532 7 5
24 79097 5 4
23 76567 5 4
22 28382 5 4
21 25852 5 4
20 5775 4 3
19 5665 4 3
18 5555 4 3
17 5445 4 3
16 5335 4 3
15 Prime! 7273 3
14 595 3 3
13 414 3 2
12 161 3 2
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 23 L base 10
L base 23
Next > 10^20
75 8210665697965660128 19 14
74 4816500789870056184 19 14
73 4283464631364643824 19 14
72 487917888888719784 18 13
71 306274366663472603 18 13
70 87947524442574978 17 13
69 81157437573475118 17 13
68 75427181318172457 17 13
67 30110838583801103 17 13
66 870451686154078 15 11
65 854161737161458 15 11
64 771958868859177 15 11
63 743564333465347 15 11
62 743067525760347 15 11
61 595175959571595 15 11
60 583400171004385 15 11
59 567110222011765 15 11
58 439321919123934 15 11
57 274078272870472 15 11
56 156776767677651 15 11
55 144645535546441 15 11
54 144148727841441 15 11
53 59568111186595 14 11
52 8463508053648 13 10
51 1759179719571 13 9
50 1724384834271 13 9
49 1372149412731 13 9
48 881274472188 12 9
47 830493394038 12 9
46 676421124676 12 9
45 638980089836 12 9
44 625640046526 12 9
43 317227722713 12 9
42 63522022536 11 8
41 61029992016 11 8
40 46405150464 11 8
39 3181771813 10 7
38 2266116622 10 7
37 965585569 9 7
36 949969949 9 7
35 843636348 9 7
34 282565282 9 7
33 254040452 9 7
32 199757991 9 7
31 6307036 7 5
30 5836385 7 5
29 5116115 7 5
28 4645464 7 5
27 4151514 7 5
26 3454543 7 5
25 1911191 7 5
24 1049401 7 5
23 88488 5 4
22 84048 5 4
21 65256 5 4
20 42024 5 4
19 6336 4 3
18 5115 4 3
17 3663 4 3
16 2442 4 3
15 1221 4 3
14 898 3 3
13 737 3 3
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 24A250409 L base 10
L base 24
Next > 10^20
103 86812504855840521868 20 15
102 47620992166129902674 20 15
101 39763873222237836793 20 15
100 33847674500547674833 20 15
99 5219957301037599125 19 14
98 834291782287192438 18 13
97 830868275572868038 18 13
96 705673961169376507 18 13
95 689870646646078986 18 13
94 500807240042708005 18 13
93 351531099990135153 18 13
92 334935786687539433 18 13
91 56257511911575265 17 13
90 Prime! 3787278232872787317 13
89 1081605445061801 16 11
88 978898787898879 15 11
87 974909929909479 15 11
86 972363696363279 15 11
85 893872555278398 15 11
84 893859050958398 15 11
83 Prime! 72667445447662715 11
82 720623343326027 15 11
81 709277808772907 15 11
80 668444222444866 15 11
79 649470979074946 15 11
78 649457474754946 15 11
77 379849999948973 15 11
76 352084363480253 15 11
75 296430484034692 15 11
74 294823767328492 15 11
73 279033838330972 15 11
72 273593222395372 15 11
71 108971474179801 15 11
70 106395121593601 15 11
69 100344010443001 15 11
68 5223359533225 13 10
67 2084684864802 13 9
66 2084226224802 13 9
65 2024272724202 13 9
64 1490461640941 13 9
63 1318742478131 13 9
62 1047699967401 13 9
61 1042342432401 13 9
60 780089980087 12 9
59 686286682686 12 9
58 240745547042 12 9
57 129797797921 12 9
56 125825528521 12 9
55 3032112303 10 7
54 2315115132 10 7
53 1516776151 10 7
52 1039669301 10 7
51 981050189 9 7
50 866333668 9 7
49 760313067 9 7
48 728434827 9 7
47 491979194 9 7
46 459020954 9 7
45 417767714 9 7
44 353000353 9 7
43 311747113 9 7
42 Prime! 78656877 5
41 7658567 7 5
40 7192917 7 5
39 7132317 7 5
38 6747476 7 5
37 6281826 7 5
36 6014106 7 5
35 5836385 7 5
34 5103015 7 5
33 4925294 7 5
32 4296924 7 5
31 4029204 7 5
30 Prime! 36737637 5
29 3118113 7 5
28 2762672 7 5
27 2267622 7 5
26 2207022 7 5
25 Prime! 18515817 5
24 374473 6 5
23 13631 5 3
22 12621 5 3
21 11011 5 3
20 10001 5 3
19 8558 4 3
18 6996 4 3
17 6226 4 3
16 4664 4 3
15 2332 4 3
14 575 3 2
13 525 3 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 25A250410 L base 10
L base 25
Next > 10^20
96 77606803722730860677 20 15
95 62581772266227718526 20 15
94 Prime! 127278701610787272119 13
93 Prime! 127239875157893272119 13
92 Prime! 127239449794493272119 13
91 1262866576756682621 19 13
90 1262694643464962621 19 13
89 1262690389830962621 19 13
88 Prime! 126258522522585262119 13
87 1262196960696912621 19 13
86 Prime! 126219695359691262119 13
85 1252998152518992521 19 13
84 1252990535350992521 19 13
83 1252881117111882521 19 13
82 689560096690065986 18 13
81 109981264462189901 18 13
80 62005276067250026 17 13
79 8251018778101528 16 12
78 1134114554114311 16 11
77 858118262811858 15 11
76 854207131702458 15 11
75 659953777359956 15 11
74 606970919079606 15 11
73 507756707657705 15 11
72 404662313266404 15 11
71 404615656516404 15 11
70 400704525407004 15 11
69 309318434813903 15 11
68 259756919657952 15 11
67 255881999188552 15 11
66 255839929938552 15 11
65 251970868079152 15 11
64 206784282487602 15 11
63 206224040422602 15 11
62 202867292768202 15 11
61 202307050703202 15 11
60 156662525266651 15 11
59 89954955945998 14 10
58 89331400413398 14 10
57 61986277268916 14 10
56 28023488432082 14 10
55 1678753578761 13 9
54 Prime! 167869996876113 9
53 1678690968761 13 9
52 83895259838 11 8
51 83849694838 11 8
50 874868478 9 7
49 874383478 9 7
48 827777728 9 7
47 223454322 9 6
46 85400458 8 6
45 9498949 7 5
44 Prime! 94939497 5
43 9467649 7 5
42 9462649 7 5
41 9436349 7 5
40 9431349 7 5
39 9405049 7 5
38 Prime! 94000497 5
37 8986898 7 5
36 6639366 7 5
35 6634366 7 5
34 6608066 7 5
33 6603066 7 5
32 3397933 7 5
31 Prime! 33929337 5
30 3366633 7 5
29 3361633 7 5
28 3335333 7 5
27 3330333 7 5
26 3309033 7 5
25 Prime! 33040337 5
24 2859582 7 5
23 2828282 7 5
22 626626 6 5
21 622226 6 5
20 9339 4 3
19 8338 4 3
18 7887 4 3
17 6886 4 3
16 1001 4 3
15 676 3 3
14 626 3 3
13 494 3 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 26 L base 10
L base 26
Next > 10^20
90 93028124222242182039 20 15
89 9767283178713827679 19 14
88 6996005035305006996 19 14
87 2334617912197164332 19 13
86 2162340330330432612 19 13
85 1897787568657877981 19 13
84 1139080380830809311 19 13
83 1056500659560056501 19 13
82 739608723327806937 18 13
81 95118076767081159 17 12
80 89973287278237998 17 12
79 3603830770383063 16 11
78 3603500110053063 16 11
77 3555977887795553 16 11
76 3555647227465553 16 11
75 1364785115874631 16 11
74 1009338558339001 16 11
73 889700474007988 15 11
72 889266565662988 15 11
71 873216272612378 15 11
70 738793101397837 15 11
69 722274868472227 15 11
68 612500656005216 15 11
67 520743626347025 15 11
66 512326979623215 15 11
65 420569949965024 15 11
64 179877909778971 15 11
63 106018868810601 15 10
62 103472686274301 15 10
61 92424066042429 14 10
60 5404902094045 13 9
59 5223922293225 13 9
58 4726136316274 13 9
57 4190117110914 13 9
56 3693694963963 13 9
55 3662197912663 13 9
54 Prime! 361043734016313 9
53 3335051505333 13 9
52 3193401043913 13 9
51 3146469646413 13 9
50 2183758573812 13 9
49 2149753579412 13 9
48 1181201021811 13 9
47 1134269624311 13 9
46 185076670581 12 8
45 72728282727 11 8
44 30966666903 11 8
43 6825225286 10 7
42 4417777144 10 7
41 2069559602 10 7
40 933242339 9 7
39 643090346 9 7
38 626262626 9 7
37 321131123 9 7
36 Prime! 3192829139 7
35 238010832 9 6
34 218050812 9 6
33 134515431 9 6
32 9823289 7 5
31 9679769 7 5
30 8285828 7 5
29 7924297 7 5
28 6530356 7 5
27 5048405 7 5
26 4631364 7 5
25 1387831 7 5
24 84348 5 4
23 49194 5 4
22 18981 5 4
21 Prime! 174715 3
20 14841 5 3
19 Prime! 133315 3
18 10701 5 3
17 9009 4 3
16 8228 4 3
15 7447 4 3
14 4114 4 3
13 989 3 3
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 27A250411 L base 10
L base 27
Next > 10^20
84 3386694465644966833 19 13
83 3032960836380692303 19 13
82 2988046368636408892 19 13
81 2973882904092883792 19 13
80 2885566902096655882 19 13
79 2800354468644530082 19 13
78 2019923988893299102 19 13
77 Prime! 197578397979387579119 13
76 1905991653561995091 19 13
75 1800943129213490081 19 13
74 1653624894984263561 19 13
73 957001143341100759 18 13
72 752009074470900257 18 13
71 475084743347480574 18 13
70 295871648846178592 18 13
69 63240319091304236 17 12
68 3774273333724773 16 11
67 2533880440883352 16 11
66 1276149009416721 16 11
65 987115383511789 15 11
64 963217686712369 15 11
63 872951606159278 15 11
62 824685424586428 15 11
61 570984989489075 15 11
60 6041548451406 13 9
59 6014294924106 13 9
58 5779540459775 13 9
57 5193025203915 13 9
56 5052248422505 13 9
55 4806859586084 13 9
54 4725972795274 13 9
53 4520609060254 13 9
52 4446399936444 13 9
51 4280234320824 13 9
50 3958336338593 13 9
49 3817559557183 13 9
48 2969036309692 13 9
47 2904768674092 13 9
46 2823881883282 13 9
45 9058338509 10 7
44 8417447148 10 7
43 5364224635 10 7
42 2487997842 10 7
41 2132882312 10 7
40 836040638 9 7
39 609808906 9 7
38 214171412 9 6
37 67166176 8 6
36 9827289 7 5
35 9466649 7 5
34 9392939 7 5
33 8737378 7 5
32 8663668 7 5
31 7573757 7 5
30 7368637 7 5
29 6639366 7 5
28 6278726 7 5
27 5549455 7 5
26 5475745 7 5
25 4385834 7 5
24 2287822 7 5
23 1197911 7 5
22 65856 5 4
21 17871 5 3
20 15951 5 3
19 13031 5 3
18 Prime! 103015 3
17 Prime! 9193 3
16 838 3 3
15 Prime! 7573 3
14 616 3 2
13 252 3 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 28 L base 10
L base 28
Next > 10^20
80 29518742877824781592 20 14
79 19799649566594699791 20 14
78 6242866325236682426 19 13
77 6215457749477545126 19 13
76 4875696356536965784 19 13
75 4380016867686100834 19 13
74 3961949609069491693 19 13
73 3601086475746801063 19 13
72 2988309751579038892 19 13
71 2918489161619848192 19 13
70 1747045084805407471 19 13
69 314435021120534413 18 13
68 20210235053201202 17 12
67 5249970550799425 16 11
66 918395696593819 15 11
65 850128939821058 15 11
64 629596242695926 15 11
63 548785939587845 15 11
62 525408828804525 15 11
61 319102262201913 15 11
60 54173144137145 14 10
59 9693965693969 13 9
58 8338331338338 13 9
57 8332192912338 13 9
56 6385093905836 13 9
55 5788955598875 13 9
54 4699722279964 13 9
53 4120874780214 13 9
52 Prime! 359787178795313 9
51 2636029206362 13 9
50 731212212137 12 9
49 396183381693 12 9
48 276220022672 12 8
47 89279097298 11 8
46 79124342197 11 8
45 13363136331 11 7
44 13240004231 11 7
43 11242524211 11 7
42 10549494501 11 7
41 7298118927 10 7
40 6175005716 10 7
39 5760110675 10 7
38 1538668351 10 7
37 Prime! 9471417499 7
36 904171409 9 7
35 Prime! 7739393779 7
34 Prime! 7515851579 7
33 711757117 9 7
32 500595005 9 7
31 427777724 9 6
30 161040161 9 6
29 10499401 8 5
28 Prime! 93242397 5
27 8788878 7 5
26 7003007 7 5
25 6601066 7 5
24 6231326 7 5
23 5695965 7 5
22 2972792 7 5
21 20802 5 3
20 16961 5 3
19 15251 5 3
18 10401 5 3
17 6336 4 3
16 5775 4 3
15 696 3 2
14 464 3 2
13 232 3 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 29 L base 10
L base 29
Next > 10^20
74 9697997765677997969 19 13
73 8524686215126864258 19 13
72 8371624840484261738 19 13
71 8321104265624011238 19 13
70 6552920373730292556 19 13
69 6429956023206599246 19 13
68 4403998032308993044 19 13
67 3624609808089064263 19 13
66 3351297118117921533 19 13
65 1818308821288038181 19 13
64 760804929929408067 18 13
63 Prime! 1169680929086961117 11
62 7423932992393247 16 11
61 5268469009648625 16 11
60 2658767997678562 16 11
59 12102077020121 14 9
58 9852537352589 13 9
57 8991895981998 13 9
56 8939482849398 13 9
55 8775005005778 13 9
54 8511759571158 13 9
53 8361888881638 13 9
52 7696190916967 13 9
51 Prime! 706618381660713 9
50 7040427240407 13 9
49 6975552555796 13 9
48 6127372737216 13 9
47 5634774774365 13 9
46 5060470740605 13 9
45 4870236320784 13 9
44 4240229220424 13 9
43 4022056502204 13 9
42 Prime! 395718181759313 9
41 3301418141033 13 9
40 Prime! 300023432000313 9
39 2440776770442 13 9
38 Prime! 114507170541113 9
37 15865056851 11 7
36 15700600751 11 7
35 14914241941 11 7
34 14698289641 11 7
33 14533833541 11 7
32 5983223895 10 7
31 5255225525 10 7
30 4771771774 10 7
29 4043773404 10 7
28 693252396 9 7
27 9911199 7 5
26 9537359 7 5
25 8525258 7 5
24 Prime! 79585977 5
23 7139317 7 5
22 7078707 7 5
21 6233326 7 5
20 6172716 7 5
19 5160615 7 5
18 4654564 7 5
17 4593954 7 5
16 3581853 7 5
15 19191 5 3
14 1771 4 3
13 Prime! 9293 3
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 30 L base 10
L base 30
Next > 10^20
72 213121689986121312 18 12
71 212937009900739212 18 12
70 12602195859120621 17 11
69 509566626665905 15 10
68 487035171530784 15 10
67 239318080813932 15 10
66 238892545298832 15 10
65 14313300331341 14 9
64 Prime! 120111711102113 9
63 1201109011021 13 9
62 16004240061 11 7
61 15826462851 11 7
60 15599599551 11 7
59 15583138551 11 7
58 15347274351 11 7
57 2134994312 10 7
56 2127777212 10 7
55 1142992411 10 7
54 637888736 9 6
53 296878692 9 6
52 17433471 8 5
51 3178713 7 5
50 3161613 7 5
49 2402042 7 5
48 2293922 7 5
47 2285822 7 5
46 2277722 7 5
45 2269622 7 5
44 2102012 7 5
43 1501051 7 5
42 1392931 7 5
41 1384831 7 5
40 Prime! 12010217 5
39 Prime! 10929017 5
38 1084801 7 5
37 735537 6 4
36 20602 5 3
35 20302 5 3
34 20002 5 3
33 19791 5 3
32 19491 5 3
31 19191 5 3
30 18981 5 3
29 Prime! 106015 3
28 Prime! 103015 3
27 10001 5 3
26 7117 4 3
25 6006 4 3
24 5225 4 3
23 4444 4 3
22 4114 4 3
21 3333 4 3
20 3003 4 3
19 2552 4 3
18 2222 4 3
17 1771 4 3
16 1441 4 3
15 1111 4 3
14 868 3 2
13 434 3 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 31 L base 10
L base 31
Next > 10^20
86 20360129533592106302 20 13
85 11450847544574805411 20 13
84 9517904104014097159 19 13
83 9459484661664849549 19 13
82 9270992260622990729 19 13
81 8432814151514182348 19 13
80 8092734322234372908 19 13
79 8017702574752077108 19 13
78 7879371694961739787 19 13
77 6852701184811072586 19 13
76 5597872726272787955 19 13
75 4077487289827847704 19 13
74 3467500900090057643 19 13
73 2747530935390357472 19 13
72 1828521298921258281 19 13
71 1227145498945417221 19 13
70 42269242224296224 17 12
69 24191783438719142 17 11
68 23762558085526732 17 11
67 15294534043549251 17 11
66 9917528008257199 16 11
65 8744740440474478 16 11
64 Prime! 96103085803016915 11
63 831208202802138 15 11
62 673317949713376 15 10
61 635180616081536 15 10
60 616197474791616 15 10
59 19350999905391 14 9
58 18508300380581 14 9
57 Prime! 911519991511913 9
56 9028337338209 13 9
55 8760465640678 13 9
54 8605751575068 13 9
53 7707170717077 13 9
52 7511392931157 13 9
51 7225198915227 13 9
50 7138336338317 13 9
49 3406192916043 13 9
48 17039593071 11 7
47 Prime! 1181999181111 7
46 1551551551 10 7
45 961909169 9 7
44 844252448 9 6
43 65200256 8 6
42 63999936 8 6
41 23900932 8 5
40 13333331 8 5
39 9151519 7 5
38 9030309 7 5
37 Prime! 76969677 5
36 7575757 7 5
35 7454547 7 5
34 6383836 7 5
33 6262626 7 5
32 6141416 7 5
31 6020206 7 5
30 4686864 7 5
29 3494943 7 5
28 3373733 7 5
27 Prime! 32525237 5
26 3131313 7 5
25 3010103 7 5
24 86368 5 4
23 40704 5 4
22 29792 5 4
21 23832 5 3
20 22622 5 3
19 21412 5 3
18 20202 5 3
17 Prime! 198915 3
16 18681 5 3
15 Prime! 174715 3
14 7447 4 3
13 1551 4 3
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 32A099165 L base 10
L base 32
Next > 10^20
120 81298451466415489218 20 14
119 52413912066021931425 20 14
118 50385737133173758305 20 14
117 50193942722724939105 20 14
116 23398054977945089332 20 13
115 5888361733371638885 19 13
114 4650111258521110564 19 13
113 2808927324237298082 19 13
112 2449080129210809442 19 13
111 776016912219610677 18 12
110 571259217712952175 18 12
109 465707571175707564 18 12
108 330774945549477033 18 12
107 112474443344474211 18 12
106 85491930303919458 17 12
105 33303935753930333 17 11
104 27630511811503672 17 11
103 27429643234692472 17 11
102 27402111411120472 17 11
101 Prime! 1762470191074267117 11
100 17096171817169071 17 11
99 14777935853977741 17 11
98 13177885058877131 17 11
97 Prime! 1315035323530513117 11
96 Prime! 1089471131174980117 11
95 10603962026930601 17 11
94 10478015751087401 17 11
93 10263806360836201 17 11
92 3422669229662243 16 11
91 2869960660699682 16 11
90 2297158228517922 16 11
89 1278746666478721 16 11
88 1032078008702301 16 10
87 24916011061942 14 9
86 17438700783471 14 9
85 10641522514601 14 9
84 8867028207688 13 9
83 8842552552488 13 9
82 8825076705288 13 9
81 6886033306886 13 9
80 5842794972485 13 9
79 5806855586085 13 9
78 4462757572644 13 9
77 1462999992641 13 9
76 1232143412321 13 9
75 935448844539 12 8
74 846261162648 12 8
73 691647746196 12 8
72 494889988494 12 8
71 444036630444 12 8
70 421833338124 12 8
69 34318181343 11 7
68 18884748881 11 7
67 14311211341 11 7
66 10269296201 11 7
65 10261916201 11 7
64 8804774088 10 7
63 6806006086 10 7
62 3403003043 10 7
61 2880990882 10 7
60 1219669121 10 7
59 983767389 9 6
58 933909339 9 6
57 388919883 9 6
56 37477473 8 6
55 29800892 8 5
54 25777752 8 5
53 21499412 8 5
52 21033012 8 5
51 18255281 8 5
50 9867689 7 5
49 9802089 7 5
48 9658569 7 5
47 8407048 7 5
46 6882886 7 5
45 6673766 7 5
44 5487845 7 5
43 5422245 7 5
42 4236324 7 5
41 3825283 7 5
40 2639362 7 5
39 1251521 7 5
38 912219 6 4
37 804408 6 4
36 780087 6 4
35 717717 6 4
34 672276 6 4
33 609906 6 4
32 585585 6 4
31 564465 6 4
30 477774 6 4
29 369963 6 4
28 54945 5 4
27 32223 5 3
26 29692 5 3
25 21012 5 3
24 Prime! 198915 3
23 15951 5 3
22 9449 4 3
21 6886 4 3
20 5445 4 3
19 2882 4 3
18 1441 4 3
17 858 3 2
16 363 3 2
15 99 2 2
14 66 2 2
13 33 2 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 33 L base 10
L base 33
Next > 10^20
67 38230911200211903283 20 13
66 37538898355389883573 20 13
65 19409402444420490491 20 13
64 18783954433445938781 20 13
63 9458721256521278549 19 13
62 6602041596951402066 19 13
61 4792519341439152974 19 13
60 3767693732373967673 19 13
59 3419314993994139143 19 13
58 3072610981890162703 19 13
57 49824185758142894 17 11
56 49398817071889394 17 11
55 43902061516020934 17 11
54 39190925052909193 17 11
53 26293112421139262 17 11
52 24361112521116342 17 11
51 22435712721753422 17 11
50 19255758085755291 17 11
49 681321878123186 15 10
48 7087281827807 13 9
47 5239168619325 13 9
46 3298767678923 13 9
45 3125102015213 13 9
44 2957779777592 13 9
43 2908060608092 13 9
42 2736923296372 13 9
41 40909290904 11 7
40 30817071803 11 7
39 28681818682 11 7
38 12483938421 11 7
37 610787016 9 6
36 26811862 8 5
35 26211262 8 5
34 14111141 8 5
33 9012109 7 5
32 7192917 7 5
31 6545456 7 5
30 5153515 7 5
29 4506054 7 5
28 3114113 7 5
27 2369632 7 5
26 Prime! 18202817 5
25 1294921 7 5
24 421124 6 4
23 415514 6 4
22 409904 6 4
21 31213 5 3
20 29892 5 3
19 24442 5 3
18 19091 5 3
17 17671 5 3
16 12221 5 3
15 10701 5 3
14 646 3 2
13 272 3 2
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 34 L base 10
L base 34
Next > 10^20
73 74850890322309805847 20 13
72 49116020022002061194 20 13
71 40329654488445692304 20 13
70 36120528966982502163 20 13
69 13738892611629883731 20 13
68 13464966499466946431 20 13
67 4980354200024530894 19 13
66 3068265789875628603 19 13
65 66618580008581666 17 11
64 66387132523178366 17 11
63 63344575857544336 17 11
62 62703992029930726 17 11
61 57360531413506375 17 11
60 51914591419541915 17 11
59 46571130803117564 17 11
58 42805321512350824 17 11
57 41596743034769514 17 11
56 29974237873247992 17 11
55 26712276167221762 17 11
54 11727327672372711 17 11
53 Prime! 1137654545456731117 11
52 7894167667614987 16 11
51 6173061111603716 16 11
50 3630457117540363 16 11
49 3033080770803303 16 11
48 43649088094634 14 9
47 9950190910599 13 9
46 9326196916239 13 9
45 5641401041465 13 9
44 4048267628404 13 9
43 43590509534 11 7
42 35793239753 11 7
41 30632523603 11 7
40 30268686203 11 7
39 28185658182 11 7
38 22835253822 11 7
37 18319091381 11 7
36 6447777446 10 7
35 5086996805 10 7
34 4601881064 10 7
33 525868525 9 6
32 31500513 8 5
31 29622692 8 5
30 8632368 7 5
29 8066608 7 5
28 7446447 7 5
27 5020205 7 5
26 2967692 7 5
25 38283 5 3
24 32123 5 3
23 31613 5 3
22 28482 5 3
21 27972 5 3
20 21812 5 3
19 Prime! 160615 3
18 Prime! 155515 3
17 9119 4 3
16 2552 4 3
15 595 3 2
14 525 3 2
13 33 2 1
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 35 L base 10
L base 35
Next > 10^20
86 80804050955905040808 20 13
85 76992678711787629967 20 13
84 76505756233265750567 20 13
83 48005895800859850084 20 13
82 26359176200267195362 20 13
81 7794403740473044977 19 13
80 7775913126213195777 19 13
79 7736456939396546377 19 13
78 7675459513159545767 19 13
77 7458819033309188547 19 13
76 7377239767679327737 19 13
75 7360219995999120637 19 13
74 7062044826284402607 19 13
73 6386383582853836836 19 13
72 6187432844482347816 19 13
71 2192548599958452912 19 12
70 840796119911697048 18 12
69 801949761167949108 18 12
68 94935358285353949 17 11
67 94912815351821949 17 11
66 94506362726360549 17 11
65 94154052825045149 17 11
64 Prime! 7593088878880395717 11
63 75138056765083157 17 11
62 75113827972831157 17 11
61 56584814841848565 17 11
60 56528122722182565 17 11
59 56120175257102165 17 11
58 40916991319961904 17 11
57 40543993339934504 17 11
56 Prime! 3796416010614697317 11
55 Prime! 3758950686059857317 11
54 21548685358684512 17 11
53 21175687378657112 17 11
52 18571625352617581 17 11
51 17731713731713771 17 11
50 17302023632020371 17 11
49 232131696131232 15 10
48 217030505030712 15 10
47 30869533596803 14 9
46 28165944956182 14 9
45 Prime! 971078087017913 9
44 9638309038369 13 9
43 8703990993078 13 9
42 2121358531212 13 8
41 2102654562012 13 8
40 69497279496 11 8
39 56028182065 11 7
38 55972827955 11 7
37 55964546955 11 7
36 34145054143 11 7
35 Prime! 3384292483311 7
34 33834643833 11 7
33 23780308732 11 7
32 23772027732 11 7
31 12599199521 11 7
30 9166226619 10 7
29 26922962 8 5
28 Prime! 18818817 5
27 65556 5 4
26 63036 5 4
25 42524 5 3
24 34643 5 3
23 27672 5 3
22 21612 5 3
21 19791 5 3
20 14641 5 3
19 13731 5 3
18 3993 4 3
17 2662 4 3
16 1331 4 3
15 828 3 2
14 252 3 2
13 33 2 1
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Index Nr
Also palindromic in base 36A250412 L base 10
L base 36
Next > 10^20
98 89811756188165711898 20 13
97 89128718100181782198 20 13
96 68332722733722723386 20 13
95 40685060744706058604 20 13
94 21783718822881738712 20 13
93 5056422359532246505 19 13
92 2476507590957056742 19 12
91 854404185581404458 18 12
90 839256186681652938 18 12
89 116979806608979611 18 11
88 77305171417150377 17 11
87 70701803330810707 17 11
86 70649867676894607 17 11
85 70546180208164507 17 11
84 66934618481643966 17 11
83 57673510101537675 17 11
82 50813624942631805 17 11
81 46524937473942564 17 11
80 46421250005212464 17 11
79 13906815051860931 17 11
78 5804986116894085 16 11
77 389004000400983 15 10
76 361400848004163 15 10
75 343201454102343 15 10
74 85582866828558 14 9
73 67743488434776 14 9
72 32866755766823 14 9
71 28420977902482 14 9
70 25120399302152 14 9
69 3955010105593 13 9
68 2402398932042 13 8
67 1679755579761 13 8
66 73533033537 11 7
65 71904040917 11 7
64 66516061566 11 7
63 66394149366 11 7
62 61664946616 11 7
61 59552225595 11 7
60 56276967265 11 7
59 56102620165 11 7
58 54647974645 11 7
57 49931613994 11 7
56 44596069544 11 7
55 37579097573 11 7
54 37280408273 11 7
53 27958485972 11 7
52 22446164422 11 7
51 952343259 9 6
50 48655684 8 5
49 10066001 8 5
48 9488849 7 5
47 9242429 7 5
46 6950596 7 5
45 6918196 7 5
44 5927295 7 5
43 5182815 7 5
42 4306034 7 5
41 Prime! 33151337 5
40 1867681 7 5
39 1301031 7 4
38 987789 6 4
37 741147 6 4
36 159951 6 4
35 42224 5 3
34 37973 5 3
33 36063 5 3
32 33433 5 3
31 Prime! 308035 3
30 21112 5 3
29 19491 5 3
28 16861 5 3
27 12321 5 3
26 5115 4 3
25 2882 4 3
24 1441 4 3
23 1221 4 2
22 999 3 2
21 888 3 2
20 777 3 2
19 666 3 2
18 555 3 2
17 444 3 2
16 333 3 2
15 222 3 2
14 111 3 2
13 33 2 1
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
MISSING TABLES PLANNED FOR CONSTRUCTION IN THE FUTURE
Index Nr
Also palindromic in base 60A262069 L base 10
L base 60
Next >10^20
88 19260605633650606291 20 11
87 19109139233293190191 20 11
86 19108306011060380191 20 11
85 12953949300394935921 20 11
84 1059511493941159501 19 11
83 1008860210120688001 19 11
82 111705028820507111 18 10
81 96791647174619769 17 10
80 94855661216655849 17 10
79 94812756665721849 17 10
78 90820011311002809 17 10
77 86756027772065768 17 10
76 84686895859868648 17 10
75 78698827572889687 17 10
74 70632865556823607 17 10
73 62576136663167526 17 10
72 44454350005345444 17 10
71 40448567076584404 17 10
70 26334850305843362 17 10
69 18278121412187281 17 10
68 18235216861253281 17 10
67 6140607337060416 16 9
66 5979490660949795 16 9
65 4056041771406504 16 9
64 4041670880761404 16 9
63 2114962552694112 16 9
62 2114927447294112 16 9
61 1997507557057991 16 9
60 1982186226812891 16 9
59 1927217227127291 16 9
58 1912846336482191 16 9
57 1021449441201 13 7
56 872376673278 12 7
55 872322223278 12 7
54 2230660322 10 6
53 1486446841 10 6
52 608363806 9 5
51 607272706 9 5
50 606181606 9 5
49 605090506 9 5
48 603070306 9 5
47 589616985 9 5
46 588525885 9 5
45 587434785 9 5
44 586343685 9 5
43 585252585 9 5
42 584161485 9 5
41 451929154 9 5
40 450838054 9 5
39 Prime! 3019691039 5
38 155505551 9 5
37 155343551 9 5
36 154414451 9 5
35 Prime! 1542524519 5
34 Prime! 1533233519 5
33 153161351 9 5
32 152232251 9 5
31 152070251 9 5
30 151141151 9 5
29 150050051 9 5
28 28933982 8 5
27 26233262 8 5
26 14033041 8 5
25 11166111 8 4
24 8372738 7 4
23 2796972 7 4
22 148841 6 3
21 113311 6 3
20 57375 5 3
19 57075 5 3
18 55755 5 3
17 55455 5 3
16 55155 5 3
15 55 2 1
14 44 2 1
13 33 2 1
12 22 2 1
11 Prime! 112 1
10 9 1 1
9 8 1 1
8 Prime! 71 1
7 6 1 1
6 Prime! 51 1
5 4 1 1
4 Prime! 31 1
3 Prime! 21 1
2 1 1 1
1 0 1 1
Palindromes in bases 2 and 10.
The main source for this table comes from the following weblink.
Binary/Decimal Palindromes by Charlton Harrison (email ) from Austin, Texas.
See also Sloane 's sequences A007632 and A046472 .
" I just finished writing a distributed client/server program for finding these numbers, and I currently have it running on 4 different machines at the same time and I'm finding them A LOT faster. That's how I was able to come up with those new ones. I'd say there are more to come in the near future, too."
[ December 1, 2001 ]Charlton Harrison once found this record binary decimal palindrome11 0 001 01111 00 001 01 01 01 0 11 01 000011 1 01 000001 0 00001 0111 0 0001 011 01 0 1 01 01 00001 111 01 00011 7475703079870789703075747 The binary string contains 83 digits !
[ April 11, 2003 ]
Dw (email ) wrote me the following :
"Using a backtracking solver, I have found larger numbers.
The first of these, which is the next after the one mentioned above, is
50824513851188115831542805 (86 bit, 3*5*11*11*17*17*83*11974799*97488286319).
There are no other 86 bit double palindromes.
I also have found two 89 bit double palindromes, but I am not sure if they
are the next ones. There may be some lower ones in 89 bit (haven't searched
that space completely yet) or in 87 bit that I haven't found.
These numbers are
532079161251434152161970235 (5*29*85839676103*42748430836381)
and
552963956270141072659369255 (5*7*7*71*441607*71984077228507867)
As can be seen by their factor representation, they are all composite."
50824513851188115831542805 {26}
10101000001010100000100110101010101001100000000110010101010101100100000101010000010101 {86}
532079161251434152161970235 {27}
11011100000100000001001010010000011001110101010101110011000001001010010000000100000111011 {89}
552963956270141072659369255 {27}
11100100101100110101011000010001001111100100100100111110010001000011010101100110100100111 {89}
[ April 13, 2003 ]
Dw (email ) found four new ones including the 6th double palindromic prime :
"They are, in opposite sorted order:
138758321383797383123857831 (87 bit, composite, the only 87 bit double palindrome)
390714505091666190505417093 (89 bit, prime )
351095331428353824133590153 (89 bit, composite)
795280629691202196926082597 (90 bit, composite, not sure if this is the next one)."
When asking Dw for an explanation or description in a few words
what he meant by 'Using a backtracking solver ' he replied :
"A backtracking solver is one that solves a problem made up of smaller
problems by trying every one except if it knows its earlier guesses make all
later ones depending on them impossible.
For instance, if you're in a maze and know that all corridors with green
walls eventually lead to a dead end, you can turn around as soon as you find
such a wall (backtrack) if you're trying to find the exit.
The smaller problem is avoiding a dead end, and the larger one is
finding the exit.
If you want the details:
My general strategy goes that to find a double palindromic number, the
solution to its palindromic decimal representation minus its binary
representation must be zero (since they are equal).
Furthermore, you can write a decimal palindrome like 101 * a + 10 * b, where
a and b are digits. The same can be done for binary, and you end up with a
giant (linear diophantine) equation of positive decimal and negative binary factors.
The factors can then be solved, one at a time, using the extended euclidean
algorithm. These are the smaller problems.
I also have a table of maximum and minimum values for each step. That way, if
it's impossible for the binary factors left to subtract enough from the
decimal factors to get zero (or the other way around), the solver backtracks."
[ April 13, 2003 ]Dw once found this record binary decimal palindrome1 01 001 0001 11 01 0111 00 111 001 01 01 001 01 00001 01 0000001 0 1 00001 01 00 1 01 01 00111 00111 01 011 1 0001 001 01 795280629691202196926082597 The binary string contains 90 digits ! The decimal string contains 27 digits !
138758321383797383123857831 {27}
111001011000111001101111010110010111011100111001110111010011010111101100111000110100111 {87}
351095331428353824133590153 {27}
10010001001101011010101000000110111100000100000100000111101100000010101011010110010001001 {89}
390714505091666190505417093 {27}
10100001100110001000000111100001100011000111011100011000110000111100000010001100110000101 {89}
795280629691202196926082597 {27}
101001000111010111001110010101001010000101000000101000010100101010011100111010111000100101 {90}
[ May 21, 2003 ]
Dw (email ) found a new Binary/Decimal Palindrome :
"I have been trying to find a polynomial time (growth of time needed is a
polynomial of number of bits) algorithm for finding double palindromes of
base 2 and 10. I haven't succeeded yet (my backtracking solver being
exponential), but I have found some interesting things.
For one, to find double palindromes in base 2 and 8 is very simple. Each base 8
digit maps to three bits. Therefore, every double palindrome must consist
of digits who themselves are double palindromes.
For instance, 757 as well as 575 is double palindromic. (These values are 495
and 381 in decimal respectively).
5 maps to 101 in binary, and 7 to 111 in binary.
I have found 1609061098335005338901609061 (91 bits composite),
and this is the only 91 bit one. No 92 bit double palindrome exists, and
93 bits seems to require several days of searching; therefore I'm trying to
find a polynomial time algorithm as mentioned above.
Another approach could be to create a networked version (to do the search on
multiple computers), but I haven't done that yet."
[ May 21, 2003 ]Dw once found this record binary decimal palindrome1 01 0011 001 0 11111 01111 11 0000111 0 11 001 00000 001 0001 000 00001 0011 0 111 0000111 111 011111 0 1 0011 001 01
1609061098335005338901609061 The binary palindrome contains 91 digits ! The decimal string contains 28 digits !
1609061098335005338901609061 {28}
1010011001011111011111100001110110010000000100010000000100110111000011111101111101001100101 {91}
[ June 12, 2003 ]
Dw (email ) found new Binary/Decimal Palindromes :
"I rewrote my program to use another strategy at finding the numbers, and this
let me search somewhat faster. As a result, I have found binary/decimal
palindromes up to 102 bits -- broke the 100 bit barrier so to speak.
These are:
None at 92 or 93 bits.
17869806142184248124160896871 (94 bits)
19756291244127372144219265791 (94 bits)
30000258151173237115185200003 (95 bits)
30658464822225352222846485603 (95 bits)
56532345659072227095654323565 (96 bits)
None at 97 or 98 bits.
378059787464677776464787950873 (99 bits)
1115792035060833380605302975111 (100 bits)
None at 101 bits.
3390741646331381831336461470933 (102 bits)
There may be higher ones at 102 bits; I haven't completed the search there."
17869806142184248124160896871 {29}
1110011011110110001110101001000001000000000011001100000000001000001001010111000110111101100111 {94}
19756291244127372144219265791 {29}
1111111101011000000101011001100101101101100001111000011011011010011001101010000001101011111111 {94}
30000258151173237115185200003 {29}
11000001110111110100001110001010010000110100011011000101100001001010001110000101111101110000011 {95}
30658464822225352222846485603 {29}
11000110001000000010110011101000100010000101111111110100001000100010111001101000000010001100011 {95}
56532345659072227095654323565 {29}
101101101010101001110101110101101111011010100000000001010110111101101011101011100101010101101101 {96}
378059787464677776464787950873 {30}
100110001011001001110111010000000001110111000111010111000111011100000000010111011100100110100011001 {99}
1115792035060833380605302975111 {31}
1110000101010101000110001001111111101011111110110110110111111101011111111001000110001010101010000111 {100}
3390741646331381831336461470933 {31}
101010110011000001001111000000100001000111101001011110100101111000100001000000111100100000110011010101 {102}
[ June 17, 2003 ]
Dw (email ) adds :
" There are no numbers for 103 bits."
[ Note : In fact there is one! See index number 97.
PDG ]
[ June 17, 2003 ]Dw once found this record binary decimal palindrome1 0 1 01 011 0011 000001 0011 11 0000001 0 0001 000111 1 01 001 0111 1 01 001 0111 1 0001 00001 0000001111 001 0000011 0011 01 01 01
3390741646331381831336461470933 The binary palindrome contains 102 digits ! The decimal string contains 31 digits !
Binary/Decimal Palindromes by Charlton Harrison (email ) : the longest list in existence ?
[ September 30, 2015 ]
Three more stunning numbers could be retrieved from Sloane 's OEIS database.
See index numbers 124, 125 & 126.
[ September 30, 2015 ] A former record binary decimal palindrome
1 001 1 001 1 01 1 01 1 1 01 000001 00001 000001 1 0001 1 1 001 01 1 1 001 1 1 1 0001 1 1 01 000
001 01 1 1 0001 1 1 1 001 1 1 01 001 1 1 0001 1 000001 00001 000001 01 1 1 01 1 01 1 001 1 001
1634587141488515712882175158841417854361 The binary palindrome contains 131 digits ! The decimal string contains 40 digits !
[ March 8, 2020 ]
Many more numbers could be retrieved from Sloane 's OEIS database.
See index numbers up to 147. The record dates from the end of 2015.
[ December 30, 2015 ] The current record binary decimal palindrome
Search team : Robert G. Wilson v, Charlton Harrison, Ilya Nikulshin & Andrey Astrelin
11 01 0001 01 00111 01 000000001 0011 0001 000000001 011 0001 01111 01 001 001 01 0111 0011 01 01
01 011 00111 01 01 001 001 01111 01 00011 01 000000001 00011 001 000000001 0111 001 01 0001 011
9335388324586156026843333486206516854238835339 The binary palindrome contains 153 digits ! The decimal string contains 46 digits !
Sources Revealed
Binary/Decimal Palindromes by Charlton Harrison (email ) : the longest list in existence ?
Neil Sloane 's "Integer Sequences" Encyclopedia can be consulted online :
Neil Sloane's Integer Sequences
I sampled the following base X palindromic numbers sequences from the table :
%N Binary expansion is palindromic. under A006995 -- Sum of digits A043261
%N Palindromes in base 3 (written in base 10). under A014190 -- Sum of digits A043262
%N Palindromes in base 4 (written in base 10). under A014192 -- Sum of digits A043263
%N Palindromic in base 5. under A029952 -- Sum of digits A043264
%N Palindromic in base 6. under A029953 -- Sum of digits A043265
%N Palindromic in base 7. under A029954 -- Sum of digits A043266
%N Palindromic in base 8. under A029803 -- Sum of digits A043267
%N Palindromic in base 9. under A029955 -- Sum of digits A043268
%N Palindromes. under A002113 -- Sum of digits A043269
%N Palindromic in base 11. under A029956 -- Sum of digits A043270
%N Palindromic in base 12. under A029957 -- Sum of digits A043271
%N Palindromic in base 13. under A029958 -- Sum of digits A043272
%N Palindromic in base 14. under A029959 -- Sum of digits A043273
%N Palindromic in base 15. under A029960 -- Sum of digits A043274
%N Palindromic in base 16. under A029730 -- Sum of digits A043275
%N Palindromic in bases 2 and 3. under A060792 .
%N Palindromic in bases 2 and 10. under A007632 .
%N Palindromic in bases 3 and 10. under A007633 .
%N Palindromic in bases 4 and 10. under A029961 .
%N Palindromic in bases 5 and 10. under A029962 .
%N Palindromic in bases 6 and 10. under A029963 .
%N Palindromic in bases 7 and 10. under A029964 .
%N Palindromic in base 8 and base 10. under A029804 .
%N Palindromic in bases 9 and 10. under A029965 .
%N Palindromic in bases 11 and 10. under A029966 .
%N Palindromic in bases 12 and 10. under A029967 .
%N Palindromic in bases 13 and 10. under A029968 .
%N Palindromic in bases 14 and 10. under A029969 .
%N Palindromic in bases 15 and 10. under A029970 .
%N Square in base 2 is a palindrome. under A003166 .
%N Squares which are palindromes in base 2. under A029983 .
%N n^2 is palindromic in base 3. under A029984 .
%N Squares which are palindromic in base 3. under A029985 .
%N n^2 is palindromic in base 4. under A029986 .
%N Squares which are palindromic in base 4. under A029987 .
%N n^2 is palindromic in base 5. under A029988 .
%N Squares which are palindromic in base 5. under A029989 .
%N n^2 is palindromic in base 6. under A029990 .
%N Squares which are palindromic in base 6. under A029991 .
%N n^2 is palindromic in base 7. under A029992 .
%N Squares which are palindromic in base 7. under A029993 .
%N n^2 is palindromic in base 8. under A029805 .
%N n in base 8 is a palindromic square. under A029806 .
%N n^2 is palindromic in base 9. under A029994 .
%N Squares which are palindromic in base 9. under A029995 .
%N Square is a palindrome. under A002778 .
%N Palindromic Squares. under A002779 .
%N n^2 is palindromic in base 11. under A029996 .
%N Squares which are palindromic in base 11. under A029997 .
%N n^2 is palindromic in base 12. under A029737 .
%N Squares which are palindromic in base 12. under A029738 .
%N n^2 is palindromic in base 13. under A029998 .
%N Squares which are palindromic in base 13. under A029999 .
%N n^2 is palindromic in base 14. under A030072 .
%N Squares which are palindromes in base 14. under A030074 .
%N n^2 is palindromic in base 15. under A030073 .
%N Squares which are palindromes in base 15. under A030075 .
%N n^2 is palindromic in base 16. under A029733 .
%N Palindromic squares in base 16. under A029734 .
%N n^3 is palindromic in base 4. under A046231 .
%N Cubes which are palindromes in base 4. under A046232 .
%N n^3 is palindromic in base 5. under A046233 .
%N Cubes which are palindromes in base 5. under A046234 .
%N n^3 is palindromic in base 6. under A046235 .
%N Cubes which are palindromes in base 6. under A046236 .
%N n^3 is palindromic in base 7. under A046237 .
%N Cubes which are palindromes in base 7. under A046238 .
%N n^3 is palindromic in base 8. under A046239 .
%N Cubes which are palindromes in base 8. under A046240 .
%N n^3 is palindromic in base 9. under A046241 .
%N Cubes which are palindromes in base 9. under A046242 .
%N Cube is a palindrome. under A002780 .
%N Palindromic cubes. under A002781 .
%N n^3 is palindromic in base 11. under A046243 .
%N Cubes which are palindromes in base 11. under A046244 .
%N n^3 is palindromic in base 12. under A046245 .
%N Cubes which are palindromes in base 12. under A046246 .
%N n^3 is palindromic in base 13. under A046247 .
%N Cubes which are palindromes in base 13. under A046248 .
%N n^3 is palindromic in base 14. under A046249 .
%N Cubes which are palindromes in base 14. under A046250 .
%N n^3 is palindromic in base 15. under A046251 .
%N Cubes which are palindromes in base 15. under A046252 .
%N n^3 is palindromic in base 16. under A029735 .
%N Cubes which are palindromes in base 16. under A029736 .
%N Palindromic primes in base 2. under A016041 .
%N Palindromic primes in base 3. under A029971 .
%N Palindromic primes in base 4. under A029972 .
%N Palindromic primes in base 5. under A029973 .
%N Palindromic primes in base 6. under A029974 .
%N Palindromic primes in base 7. under A029975 .
%N Palindromic primes in base 8. under A029976 .
%N Octal palindromes which are also primes. under A006341 .
%N Palindromic primes in base 9. under A029977 .
%N Palindromic primes. under A002385 .
%N Palindromic primes in base 11. under A029978 .
%N Palindromic primes in base 12. under A029979 .
%N Palindromic primes in base 13. under A029980 .
%N Palindromic primes in base 14. under A029981 .
%N Palindromic primes in base 15. under A029982 .
%N Palindromic primes in base 16. under A029732 .
%N Palindromic primes in base 10 and base 2. under A046472 .
%N Palindromic primes in base 10 and base 3. under A046473 .
%N Palindromic primes in base 10 and base 4. under A046474 .
%N Palindromic primes in base 10 and base 6. under A046475 .
%N Palindromic primes in base 10 and base 7. under A046476 .
%N Palindromic primes in base 10 and base 8. under A046477 .
%N Palindromic primes in base 10 and base 9. under A046478 .
%N Palindromic primes. under A002385 .
%N Palindromic primes in base 10 and base 11. under A046479 .
%N Palindromic primes in base 10 and base 12. under A046480 .
%N Palindromic primes in base 10 and base 13. under A046481 .
%N Palindromic primes in base 10 and base 14. under A046482 .
%N Palindromic primes in base 10 and base 15. under A046483 .
%N Palindromic primes in base 10 and base 16. under A046484 .
%N Palindromic primes in bases 2 and 4. under A056130 .
%N Palindromic primes in bases 2 and 8. under A056145 .
%N Palindromic primes in bases 4 and 8. under A056146 .
%N Not palindromic in any base from 2 to n-2. under A016038 .
%N Smallest palindrome greater than n in bases n and n+1. under A048268 .
%N First palindrome greater than n+2 in bases n+2 and n. under A048269 .
%N The first non-trivial (k>n+2) palindromic prime in both bases n and n+2. under A057199 .
%N Symmetric bit strings (bit-reverse palindromes),
including as many leading as trailing zeros. under A057890 .
Click here to view some of the author 's [P. De Geest ] entries to the table.
Click here to view some entries to the table about palindromes .
More Integer Sequences from Sloane's OEIS database
A043001 n-th base 3 palindrome that starts with 1. - Clark Kimberling
A043002 n-th base 3 palindrome that starts with 2. - Clark Kimberling
A043003 n-th base 4 palindrome that starts with 1. - Clark Kimberling
A043004 n-th base 4 palindrome that starts with 2. - Clark Kimberling
A043005 n-th base 4 palindrome that starts with 3. - Clark Kimberling
A043006 n-th base 5 palindrome that starts with 1. - Clark Kimberling
A043007 n-th base 5 palindrome that starts with 2. - Clark Kimberling
A043008 n-th base 5 palindrome that starts with 3. - Clark Kimberling
A043009 n-th base 5 palindrome that starts with 4. - Clark Kimberling
A043010 n-th base 6 palindrome that starts with 1. - Clark Kimberling
A043011 n-th base 6 palindrome that starts with 2. - Clark Kimberling
A043012 n-th base 6 palindrome that starts with 3. - Clark Kimberling
A043013 n-th base 6 palindrome that starts with 4. - Clark Kimberling
A043014 n-th base 6 palindrome that starts with 5. - Clark Kimberling
A043015 n-th base 7 palindrome that starts with 1. - Clark Kimberling
A043016 n-th base 7 palindrome that starts with 2. - Clark Kimberling
A043017 n-th base 7 palindrome that starts with 3. - Clark Kimberling
A043018 n-th base 7 palindrome that starts with 4. - Clark Kimberling
A043019 n-th base 7 palindrome that starts with 5. - Clark Kimberling
A043020 n-th base 7 palindrome that starts with 6. - Clark Kimberling
A043021 n-th base 8 palindrome that starts with 1. - Clark Kimberling
A043022 n-th base 8 palindrome that starts with 2. - Clark Kimberling
A043023 n-th base 8 palindrome that starts with 3. - Clark Kimberling
A043024 n-th base 8 palindrome that starts with 4. - Clark Kimberling
A043025 n-th base 8 palindrome that starts with 5. - Clark Kimberling
A043026 n-th base 8 palindrome that starts with 6. - Clark Kimberling
A043027 n-th base 8 palindrome that starts with 7. - Clark Kimberling
A043028 n-th base 9 palindrome that starts with 1. - Clark Kimberling
A043029 n-th base 9 palindrome that starts with 2. - Clark Kimberling
A043030 n-th base 9 palindrome that starts with 3. - Clark Kimberling
A043031 n-th base 9 palindrome that starts with 4. - Clark Kimberling
A043032 n-th base 9 palindrome that starts with 5. - Clark Kimberling
A043033 n-th base 9 palindrome that starts with 6. - Clark Kimberling
A043034 n-th base 9 palindrome that starts with 7. - Clark Kimberling
A043035 n-th base 9 palindrome that starts with 8. - Clark Kimberling
A043036 n-th base 10 palindrome that starts with 1. - Clark Kimberling
A043037 n-th base 10 palindrome that starts with 2. - Clark Kimberling
A043038 n-th base 10 palindrome that starts with 3. - Clark Kimberling
A043039 n-th base 10 palindrome that starts with 4. - Clark Kimberling
A043040 n-th base 10 palindrome that starts with 5. - Clark Kimberling
A043041 n-th base 10 palindrome that starts with 6. - Clark Kimberling
A043042 n-th base 10 palindrome that starts with 7. - Clark Kimberling
A043043 n-th base 10 palindrome that starts with 8. - Clark Kimberling
A043044 n-th base 10 palindrome that starts with 9. - Clark Kimberling
A043045 a(n)=(s(n)+2)/3, where s(n)=n-th base 3 palindrome that starts with 1. - Clark Kimberling
A043046 a(n)=(s(n)+1)/3, where s(n)=n-th base 3 palindrome that starts with 2. - Clark Kimberling
A043047 a(n)=(s(n)+3)/4, where s(n)=n-th base 4 palindrome that starts with 1. - Clark Kimberling
A043048 a(n)=(s(n)+2)/4, where s(n)=n-th base 4 palindrome that starts with 2. - Clark Kimberling
A043049 a(n)=(s(n)+1)/4, where s(n)=n-th base 4 palindrome that starts with 3. - Clark Kimberling
A043050 a(n)=(s(n)+4)/5, where s(n)=n-th base 5 palindrome that starts with 1. - Clark Kimberling
A043051 a(n)=(s(n)+3)/5, where s(n)=n-th base 5 palindrome that starts with 2. - Clark Kimberling
A043052 a(n)=(s(n)+2)/5, where s(n)=n-th base 5 palindrome that starts with 3. - Clark Kimberling
A043053 a(n)=(s(n)+1)/5, where s(n)=n-th base 5 palindrome that starts with 4. - Clark Kimberling
A043054 a(n)=(s(n)+5)/6, where s(n)=n-th base 6 palindrome that starts with 1. - Clark Kimberling
A043055 a(n)=(s(n)+4)/6, where s(n)=n-th base 6 palindrome that starts with 2. - Clark Kimberling
A043056 a(n)=(s(n)+3)/6, where s(n)=n-th base 6 palindrome that starts with 3. - Clark Kimberling
A043057 a(n)=(s(n)+2)/6, where s(n)=n-th base 6 palindrome that starts with 4. - Clark Kimberling
A043058 a(n)=(s(n)+1)/6, where s(n)=n-th base 6 palindrome that starts with 5. - Clark Kimberling
A043059 a(n)=(s(n)+6)/7, where s(n)=n-th base 7 palindrome that starts with 1. - Clark Kimberling
A043060 a(n)=(s(n)+5)/7, where s(n)=n-th base 7 palindrome that starts with 2. - Clark Kimberling
A043061 a(n)=(s(n)+4)/7, where s(n)=n-th base 7 palindrome that starts with 3. - Clark Kimberling
A043062 a(n)=(s(n)+3)/7, where s(n)=n-th base 7 palindrome that starts with 4. - Clark Kimberling
A043063 a(n)=(s(n)+2)/7, where s(n)=n-th base 7 palindrome that starts with 5. - Clark Kimberling
A043064 a(n)=(s(n)+1)/7, where s(n)=n-th base 7 palindrome that starts with 6. - Clark Kimberling
A043065 a(n)=(s(n)+7)/8, where s(n)=n-th base 8 palindrome that starts with 1. - Clark Kimberling
A043066 a(n)=(s(n)+6)/8, where s(n)=n-th base 8 palindrome that starts with 2. - Clark Kimberling
A043067 a(n)=(s(n)+5)/8, where s(n)=n-th base 8 palindrome that starts with 3. - Clark Kimberling
A043068 a(n)=(s(n)+4)/8, where s(n)=n-th base 8 palindrome that starts with 4. - Clark Kimberling
A043069 a(n)=(s(n)+3)/8, where s(n)=n-th base 8 palindrome that starts with 5. - Clark Kimberling
A043070 a(n)=(s(n)+2)/8, where s(n)=n-th base 8 palindrome that starts with 6. - Clark Kimberling
A043071 a(n)=(s(n)+1)/8, where s(n)=n-th base 8 palindrome that starts with 7. - Clark Kimberling
A043072 a(n)=(s(n)+8)/9, where s(n)=n-th base 9 palindrome that starts with 1. - Clark Kimberling
A043073 a(n)=(s(n)+7)/9, where s(n)=n-th base 9 palindrome that starts with 2. - Clark Kimberling
A043074 a(n)=(s(n)+6)/9, where s(n)=n-th base 9 palindrome that starts with 3. - Clark Kimberling
A043075 a(n)=(s(n)+5)/9, where s(n)=n-th base 9 palindrome that starts with 4. - Clark Kimberling
A043076 a(n)=(s(n)+4)/9, where s(n)=n-th base 9 palindrome that starts with 5. - Clark Kimberling
A043077 a(n)=(s(n)+3)/9, where s(n)=n-th base 9 palindrome that starts with 6. - Clark Kimberling
A043078 a(n)=(s(n)+2)/9, where s(n)=n-th base 9 palindrome that starts with 7. - Clark Kimberling
A043079 a(n)=(s(n)+1)/9, where s(n)=n-th base 9 palindrome that starts with 8. - Clark Kimberling
A043080 a(n)=(s(n)+9)/10, where s(n)=n-th base 10 palindrome that starts with 1. - Clark Kimberling
A043081 a(n)=(s(n)+8)/10, where s(n)=n-th base 10 palindrome that starts with 2. - Clark Kimberling
A043082 a(n)=(s(n)+7)/10, where s(n)=n-th base 10 palindrome that starts with 3. - Clark Kimberling
A043083 a(n)=(s(n)+6)/10, where s(n)=n-th base 10 palindrome that starts with 4. - Clark Kimberling
A043084 a(n)=(s(n)+5)/10, where s(n)=n-th base 10 palindrome that starts with 5. - Clark Kimberling
A043085 a(n)=(s(n)+4)/10, where s(n)=n-th base 10 palindrome that starts with 6. - Clark Kimberling
A043086 a(n)=(s(n)+3)/10, where s(n)=n-th base 10 palindrome that starts with 7. - Clark Kimberling
A043087 a(n)=(s(n)+2)/10, where s(n)=n-th base 10 palindrome that starts with 8. - Clark Kimberling
A043088 a(n)=(s(n)+1)/10, where s(n)=n-th base 10 palindrome that starts with 9. - Clark Kimberling
A016038 Strictly non-palindromic numbers: n is not palindromic in any base b with 2 <= b <= n-2. - N. J. A. Sloane.
A100563 Number of bases less than sqrt(n) in which n is a palindrome. - Gordon Robert Hamilton
Contributions
Kevin Brown informed me that he has more info about tetrahedral palindromes in other base representations.
Link to his article :
On General Palindromic Numbers
Alain Bex (email ) sent me the first palindromic squares in base 12 - go to topic .
Dw (email ) found several binary/decimal palindromes of record lengths - go to topic .
Richard Gosiorovsky (
email )
Also Palindromic in Base 16 (OEIS A029731)
[
do 7-8/3/2024 7:33 ]
Dear Mr. De Geest,
I would like to ask you for updating the table re. numbers that are palindromic in bases 10 and 16.
I did some progress on it, and found 51 new members of the sequence. See indices 84 up to 134.
Full list of new members is in the text file in the attachment.
Thank you,
Richard Gosiorovsky, Bratislava
When I asked
Richard how he achieved his results he replied:
I was inspired by
Eshed Schacham 's nice article:
"
Finding Binary & Decimal Palindromes "
The method is useful for powers of two bases (2,4,8,16).
For now I do not plan other bases. It took me 3 days of
experimenting (programming) and 2 days of running (CPU time).
If you are interested in I am sending you my piece of code
in C language (palindrom.c) with external function in assembler
allowing multiply two 64-bit integers into 128-bit value.
Now I must go on with my real job, programming of course :)
Richard
//
// Looking for Numbers that are palindromic in bases 10 and 16 simultaneously
//
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define ull unsigned long long // 64-bit integer
extern ull mul128(ull *c, ull a, ull b); // mul128.asm, see here:
// mul128 PROC
// mov rax, rdx ; rdx - 2nd argument, r8 - 3rd argument
// mul r8 ; multiply rax * r8 -> result = 128-bit rdx:rax
// mov qword ptr [rcx], rdx ; rcx - 1st argument
// ret ; return rax
// mul128 ENDP
inline ull reverse(ull x) { ull q, y=0; while(x) { q=x/10; y=10*(y-q)+x; x=q; } return y; }
inline int is_palind_128(ull h64, ull l64, int sh1, int sh2)
{
while(sh1 >= 0 ) { if ((h64>>sh1 & 0xf) != (l64>>sh2 & 0xf)) return 0; sh1-=4; sh2+=4; } sh1 = 60;
while(sh1 > sh2) { if ((l64>>sh1 & 0xf) != (l64>>sh2 & 0xf)) return 0; sh1-=4; sh2+=4; } // here we test only in lower 64-bit
return 1;
}
// 012345678901234567890
#define FROM 10000000000000LL
#define UPTO 100000000000000LL
#define M4 10000000000LL
#define M8 1000000
#define M12 100
int main(int argc, char *argv[])
{
int sh=-999, k=0;
ull h64, l64; // upper & lower 64-bit of palindrome
for(ull i=FROM; i<UPTO; i++) // i - half of palindrome
{
if (i%1000000000==0) printf(" %lld mld. %d sec. %16llx\r", i/1000000000, clock()/1000, h64);
l64 = mul128(&h64, i/10, UPTO) + reverse(i); // create palindrome: i - for even symmetry, i/10 - for odd symmetry
if (sh==-999) { sh=60; while((h64>>sh & 0xf)==0) sh-=4; } // find initial shift for leading hex digit
if (h64>>(sh+4) & 0xf) sh+=4; // hex digit overflow happened -> increase shift
if (i % M4 == 0) if ((h64 >>(sh ) & 0x000f) != (l64 & 0x000f)) { i+=M4 -1; continue; } // skip this foursome of decimal digits
if (i % M8 == 0) if ((h64 >>(sh- 8) & 0x00f0) != (l64 & 0x00f0)) { i+=M8 -1; continue; }
if (i % M12== 0) if ((h64 >>(sh-16) & 0x0f00) != (l64 & 0x0f00)) { i+=M12-1; continue; }
// 3*4 - first/last 3 hex digits was already tested by 3 upper conditions
if (is_palind_128(h64, l64, sh-3*4, 3*4)) printf(" %4d. %lld %8llx:%016llx %d sec.\n", ++k, i, h64, l64, clock()/1000);
}
printf(" total time = %d sec.\t\t\t\n", clock()/1000); getchar();
}
Eshed Schacham 's article can be found following this link:
https://ashdnazg.github.io/articles/22/Finding-Really-Big-Palindromes
As a software developer he also made public his .c code he wrote for this topic and explains the algorithm in great depth.
To my surprise he found 35 new decimal palindromes that are also palindromic in base 2 or binary.
I added them forthwith to my webpage. Please refer to indices 148 up to 183 in the very first
scrolltable of this very page. Impressive if you consider their record lengths.
Richard Gosiorovsky (
email )
Dual-base Palindromes
[
do 2/5/2024 6:02 ]
Hi Patrick,
I am sending you in the attachment several
new records for dual-base palindromes:
base 10 & 3: 4 new records → From [71] to [74]
base 10 & 4: 35 new records → From [65] to [99]
base 10 & 5: 100 new records → From [84] to [183]
base 10 & 6: 9 new records → From [110] to [118]
base 10 & 7: 8 new records → From [74] to [81]
base 10 & 8: 43 new records → From [89] to [131]
base 10 & 9: 5 new records → From [71] to [75]
base 10 & 16: 9 new records → From [135] to [143]
Thank you for this interesting entertainment.
For bases 10 & 4, 10 & 8 and 10 & 16 I used practically the same method as I mentioned earlier.
For base pair 10 & 5 I used very similar method, main difference is that solutions don't fit into
128-bit (it prunes much faster) so I rewrite the code using GMP library (GNU multiple precision).
For the rest of base pairs I used optimized brute force method, where I generate all possible
palindromes in one base and check it in another one. In cases where one base is power of 2
it is pretty straightforward (just bits comparison).
In all cases (except 10 & 5) I employ possibility of Intel processor to multiply two 64-bit integers
into 128-bit value (rdx:rax) and division of this 128-bit value into quotient and remainder
(instructions mul, div).
Richard
Richard Gosiorovsky (
email )
Dual-base Palindromes (bases 10 & 5)
[
do 5/8/2024 16:44 ]
Hi Patrick, Hi Eshed,
I am here again, I would like to ask you for updating dual-base
palindrome sequence A029962 (bases 10 & 5), where I found 52 new
members (in the attachement). I improved algorithm a bit, but it
is still far from optimal. Changing bases to 10 & 2 I can not
achieve Eshed's records at all. Basic idea remains the same.
Richard
PS: For better understanding I am sending the source code too
(it uses GMP - GNU multiple precision library)
/*
Looking for numbers simultaneously palindromic in bases 10 and 5
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "gmp.h"
#define ODD 1 // 0 - even symmetry 1 - odd symmetry
#define N 24
#define M (2*N-1) // length of palindrome
mpz_t tmp, aux;
mpz_t D[128], P[128]; // pre-computed constants: D[i] = 10^i, P[i] = 5^i
mpz_t e[128], h[128]; // e[] - end of palindrome, h[] - beginning of palindrome
int d[128], m1, m2; // 5^m = divisor for leading digit
char s[256], s1[256], s2[256];
int ispalind(char *s, int n) { for(int i=0; i<n/2; i++) if (s[i] != s[n-i-1]) return 0; return 1; }
void init_m1(mpz_t x) { m1 = M; do { m1++; mpz_fdiv_q(aux, x, P[m1]); } while (mpz_cmp_ui(aux, 5) >= 0); }
void init_m2(mpz_t x) { m2 = M; do { m2++; mpz_fdiv_q(aux, x, P[m2]); } while (mpz_cmp_ui(aux, 5) >= 0); }
int get_digit1(mpz_t x, int i) // get i-th leading digit of x in base 5
{
mpz_fdiv_q(aux, x, P[m1]);
if (mpz_cmp_ui(aux, 5) >=0) m1++;
if (mpz_cmp_ui(aux, 0) <=0) m1--;
mpz_fdiv_q(aux, x, P[m1-i]);
return mpz_fdiv_ui(aux, 5);
}
int get_digit2(mpz_t x, int i) // get i-th leading digit of x in base 5
{
mpz_fdiv_q(aux, x, P[m2]);
if (mpz_cmp_ui(aux, 5) >=0) m2++;
if (mpz_cmp_ui(aux, 0) <=0) m2--;
mpz_fdiv_q(aux, x, P[m2-i]);
return mpz_fdiv_ui(aux, 5);
}
void recur(int w)
{
if (w==6) { for(int i=0; i<6; i++) printf("%d", d[i]); printf(" %d\"\r", clock()/1000); }
if (w==N)
{
mpz_add(tmp, h[N-1], (ODD==0)?e[N-1]:e[N-2]);
mpz_get_str(s, 5, tmp);
if (ispalind(s, strlen(s)))
{
for(int i=0; i<N; i++) printf("%d", d[i]);
printf(" %d %d sec.\n", ODD, clock()/1000);
}
return;
}
for(d[w]=0; d[w]<=9; d[w]++)
{
mpz_mul_ui(tmp, D[w], d[w]); mpz_add(e[w], e[w-1], tmp);
mpz_mul_ui(tmp, D[M-w-ODD], d[w]); mpz_add(h[w], h[w-1], tmp);
mpz_fdiv_q(tmp, e[w], P[w]);
int f = mpz_fdiv_ui(tmp, 5);
mpz_add(tmp, h[w], D[M-w-ODD]);
if (f==get_digit1(h[w], w) || f==get_digit2(tmp, w)) recur(w+1);
}
}
int main()
{
printf("\n N = %d ODD = %d\n\n", N, ODD);
mpz_init(tmp); mpz_init(aux);
for(int i=1; i<128; i++) { mpz_init(D[i]); mpz_init(P[i]); mpz_init(e[i]); mpz_init(h[i]); }
mpz_set_ui(D[0], 1); for(int i=1; i<128; i++) mpz_mul_ui(D[i], D[i-1], 10);
mpz_set_ui(P[0], 1); for(int i=1; i<128; i++) mpz_mul_ui(P[i], P[i-1], 5);
for(d[0]=1; d[0]<=9; d[0]++)
{
mpz_set_ui(e[0], d[0]);
mpz_mul_ui(h[0], D[M-ODD], d[0]);
int f = mpz_fdiv_ui(e[0], 5);
mpz_add(tmp, h[0], D[M-ODD]);
init_m1(h[0]);
init_m2(tmp);
if (f==get_digit1(h[0], 0) || f==get_digit2(tmp, 0)) recur(1);
}
printf(" total time = %d sec.\t\t\t\n", clock()/1000);
getchar();
}
[ TOP OF PAGE ]
( © All rights reserved ) - Last modified : August 6, 2024.
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com