"Squares containing at most three distinct digits"
[ Patrick De Geest ]
N.J.A. Sloane (2001), Part of the
On-Line Encyclopedia of Integer Sequences
LEGEND | ||||
---|---|---|---|---|
References LINK 2 : http://www.asahi-net.or.jp/~KC2H-MSM/mathland/overview.htm ( Hisanori Mishima's website ) LINK 3 : http://djm.cc/rpa-output/arithmetic/digits/squares/three.digits.s LINK 4 : https://erich-friedman.github.io/mathmagic/0999.html LINK 5 : http://www.worldofnumbers.com/em_crump.htm LINK 6 : http://blue.kakiko.com/mmrmmr/htm/eqtn06.html LINK 8 : http://www.mathematik.uni-bielefeld.de/~sillke/SEQUENCES/series002 LINK 9 : http://mathforum.org/rec_puzzles_archive/arithmetic/part2 LINK 10a : https://bbs.emath.ac.cn/forum.php?mod=redirect&goto=findpost&ptid=19296&pid=99359 LINK 10b : https://github.com/emathgroup/selectedTopics/tree/master/data | ||||
TRIPLES | ROOT | SQUARE | SOURCE | PATTERNS & SPORADIC RECORDS (mostly L⩾17) |
0 1 2 | A058411 | A058412 | LINK 2 LINK 1 LINK 10 |
Four infinite patterns 1(0n)1 2 = 1(0n)2(0n)1 [n⩾0] 1(0n)11 2 = 1(0n)22(0n-1)121 [n⩾1] 11(0n)1 2 = 121(0n-1)22(0n)1 [n⩾1] 101(0n)10401(0n)101 2 = [17] 10959977245460011 2 = [33] 120121101221001210210111000120121 [18] 110000500908955011 2 = [35] 12100110200221012201210212022010121 [20] 10099510939154979751 2 = [39] 102000121210111101102120011101220022001 [24] 471287714788971663493899 2 = [48] 222112110111011100020110111110102200012010222201 [29] 10000009999995510010001000001 2 = [57] 100000200000010200110220220200010211120011021020002000001 |
0 1 3 | LINK 10 |
( No rootsolutions less than 1024
| ||
0 1 4 | A058413 | A058414 | LINK 2 LINK 10 |
1(0n)2 2 = 1(0n)4(0n)4 [n⩾0] 2(0n)1 2 = 4(0n)4(0n)1 [n⩾0] 102(0n)201 2 = [17] 10677612092787462 2 = [33] 114011400004041044011001104401444 [18] 105423154192999799 2 = [35] 11114041440001011101141014414040401 [19] 3743127183788194652 2 = [38] 14011001114014141144414101441441401104 [22] 3180252254777039538502 2 = [44] 10114004404014444004140001011411401140404004 |
0 1 5 | A058415 | A058416 | LINK 2 LINK 10 |
[17] 23452400954944999 2 = [33] 550015110551505101015151115110001 |
0 1 6 | A058417 | A058418 | LINK 2 LINK 1 LINK 10 |
1(0n)3(0n)1 2 = 1(0n)6(0n-1)11(0n)6(0n)1 [n⩾1] 1(0n)8(0n)1 2 = [17] 12649351807945204 2 = [33] 160006101161166601100660666601616 [26] 77470059130002034719700749 2 = [52] 6001610061606011616611060006010661000616100111161001 |
0 1 7 | A058419 | A058420 | LINK 2 LINK 10 |
[16] 8427200114569499 2 = [32] 71017701771000177071770101111001 |
0 1 8 | A058421 | A058422 | LINK 2 LINK 10 |
9(0n)1 2 = 81(0n-1)18(0n)1 [n⩾1] 1(0n+1)9 2 = 1(0n)18(0n)81 [n⩾0] 1(0n)4(0n)1 2 = 1(0n)8(0n-1)18(0n)8(0n)1 [n⩾1] 1(0n+1)9(0n)1 2 = [18] 283160940117244651 2 = [35] 80180118008081811188010188188111801 [18] 331680389653656009 2 = [36] 110011880880801080101881180101808081 [28] 2981276371121751737986262751 2 = [55] 8888008801008880800188080010010188818118011188010088001 |
0 1 9 | A058473 | A058474 | LINK 2 LINK 10 |
[20] 43694278824566964251 2 = [40] 1909190001999001011109190090109911991001 [27] 100990098979999970099500001 2 = [53] 10199000091990191001091091099001091999900190199000001 |
0 2 3 | - | - | - | combination impossible |
0 2 4 | A058423 | A058424 | LINK 2 LINK 1 LINK 10 |
2(0n)6(0n)2 2 = [16] 1562062816343832 2 = [31] 2440040242204024220420044444224 [24] 205524700326856587391168 2 = [47] 42240402444444204240022400420200244000244404224 [27] 634050802727999251005000002 2 = [54] 402020420440020222440222024020044204422022004020000004 |
0 2 5 | A058425 | A058426 | LINK 2 LINK 1 LINK 10 |
5(0n)5 2 = 25(0n-1)5(0n)25 [n⩾1] 5(0n+1)505 2 = 25(0n)505(0n-1)255025 [n⩾1] 505(0n+2)5 2 = 255025(0n-1)505(0n+2)25 [n⩾1] 15(0n+2)85(0n)15 2 = [17] 14899671139156245 2 = [33] 222000200055005555555250522500025 [17] 50000050049995505 2 = [34] 2500005005002055502050050520205025 [20] 23500043724538482665 2 = [39] 552252055055220520520522052500505502225 [20] 23558545158870178045 2 = [39] 555005050002525502502022522050000022025 [21] 150167406766664999985 2 = [41] 22550250055025025225250200022000050000225 [22] 5000000500000500254955 2 = [44] 25000005000005252550050255205255020002052025 [22] 5000005004997549999955 2 = [44] 25000050050000550000025505552050220500002025 [23] 44949994999999949999995 2 = [46] 2020502050500020505000050500052500000500000025 [24] 447241797269721007814765 2 = [48] 200025225225050225520202505522022522200552005225 [25] 5000000500499975499999955 2 = [50] 25000005005000005500225025500555205002205000002025 [27] 500000000000500000500254955 2 = [54] 250000000000500000500255205000500255205255020002052025 [29] 50000005004999999999955050005 2 = [58] 2500000500500025050020505000050050550050002020502050500025 [29] 50050000004999999999955050005 2 = [58] 2505002500500500000020500505500050500050002020502050500025 [30] 141422082876067219949805050005 2 = [59] 20000205525005225202000505202222520222202205205000550500025 |
0 2 6 | - | - | - | combination impossible |
0 2 7 | - | - | - | combination impossible |
0 2 8 | - | - | - | combination impossible |
0 2 9 | A058427 | A058428 | LINK 2 LINK 10 |
[17] 96385117673990673 2 = [34] 9290090909029029202290909290992929 [18] 151400161921673747 2 = [35] 22922009029909029220029029909020009 [21] 149067065510873088673 2 = [41] 22220990020022929092929022220290920900929 |
0 3 4 | A058429 | A058430 | LINK 2 LINK 10 |
[19] 5773251280200207952 2 = [38] 33330430344333340030340440344044034304 [23] 20832739723817975138362 2 = [45] 434003044400343443044430000434430333044043044 |
0 3 5 | - | - | - | combination impossible |
0 3 6 | A058431 | A058432 | LINK 2 LINK 10 |
[17] 25107103902348156 2 = [33] 630366666363306003336330636600336 |
0 3 7 | - | - | - | combination impossible |
0 3 8 | - | - | - | combination impossible |
0 3 9 | A058433 | A058434 | LINK 2 LINK 10 |
[9] 969071253 2 = [18] 939099093390990009 |
0 4 5 | A058435 | A058436 | LINK 2 LINK 1 LINK 10 |
[20] 21082112192576920612 2 = [39] 444455454500400455000455440400550454544 [20] 63639964217112858462 2 = [40] 4050045045555405040055544045540445005444 [22] 6674983479713230005962 2 = [44] 44555404454444540454555540045000554555545444 [26] 21214250022106461574572502 2 = [51] 450044404000444005405445044455050544404404054540004 [28] 2108436491907081488939581538 2 = [55] 4445504440405440505004450045555054500055550554550445444 |
0 4 6 | A058437 | A058438 | LINK 2 LINK 10 |
8(0n)254(0n+2)8 2 = [18] 635613598504629262 2 = [36] 404004646604004046006460044066664644 [19] 2457776365832743262 2 = [37] 6040664664446006640606666600406400644 [19] 2542962918459579238 2 = [37] 6466660404660460644444606044000660644 |
0 4 7 | A058439 | A058440 | LINK 2 LINK 10 |
[16] 2010988315424552 2 = [31] 4044074004774077447400004400704 |
0 4 8 | A058441 | A058442 | LINK 2 LINK 1 LINK 10 |
2(0n)2 2 = 4(0n)8(0n)4 [n⩾0] 2(0n)2(0n-1)2 2 = [17] 21919954490920022 2 = [33] 480484404884004840840444000480484 [18] 220001001817910022 2 = [35] 48400440800884048804840848088040484 [20] 20199021878309959502 2 = [39] 408000484840444404408480044404880088004 [24] 942575429577943326987798 2 = [48] 888448440444044400080440444440408800048040888804 [29] 20000019999991020020002000002 2 = [57] 400000800000040800440880880800040844480044084080008000004 |
0 4 9 | A058443 | A058444 | LINK 2 LINK 10 |
Two infinite patterns (9n)7 2 = (9n)4(0n)9 [n⩾1] 2(0n)1(0n)2 2 = 4(0n)4(0n)9(0n)4(0n)4 [n⩾0] [17] 99704560597822753 2 = [34] 9940999404004909449099404004499009 [22] 3015775265159011230138 2 = [43] 9094900449944904494440090444449999999499044 |
0 5 6 | A058445 | A058446 | LINK 2 LINK10 |
[16] 2236081408416666 2 = [31] 5000060065066660656065066555556 |
0 5 7 | - | - | - | combination impossible |
0 5 8 | - | - | - | combination impossible |
0 5 9 | A058447 | A058448 | LINK 2 LINK 10 |
[11] 70778174997 2 = [22] 5009550055905955950009 [12] 771395165003 2 = [24] 595050500590005595990009 |
0 6 7 | A058449 | A058450 | LINK 2 LINK 10 |
[20] 26012881552428213576 2 = [39] 676670006660660066767076066770670707776 |
0 6 8 | - | - | - | combination impossible |
0 6 9 | A058451 | A058452 | LINK 2 LINK 10 |
[17] 30000101109940614 2 = [33] 900006066606660060090966606696996 [29] 24691314243454114014126412353 2 = [57] 609660999069000006699096996606066090996096009966990996609 |
0 7 8 | - | - | - | combination impossible |
0 7 9 | A058453 | A058454 | LINK 2 LINK 10 |
[16] 8819172285373497 2 = [32] 77777799799099990007000790009009 |
0 8 9 | A058455 | A058456 | LINK 2 LINK 10 |
[15] 301345331969667 2 = [29] 90809009099908808089808090889 [27] 299831600904572582192518303 2 = [53] 89898988900998890088080098089989880890999988989999809 |
1 2 3 | A030175 | A030174 | LINK 2 LINK 10 |
[20] 56843832676142723489 2 = [40] 3231221313313311221231322223122312333121 [21] 557963558954625926861 2 = [42] 311323333121312322332133323111223321313321 |
1 2 4 | A053880 | A053881 | LINK 2 LINK 10 |
One infinite pattern (3n)8 2 = (1n)4(2n-1)44 [n⩾1] [16] 4705573731461671 2 = [32] 22142424142222114221142142112241 [21] 379766258564954821662 2 = [42] 144222411144424121442444112111142224442244 [28] 1114110597927523626433041668 2 = [55] 1241242424414424212214142144114212224412421422224222224 |
1 2 5 | A031153 | A031153 | LINK 2 LINK 10 |
(3n)5 2 = (1n)(2n+1)5 [n⩾0] 123(3n)5 2 = 152(1n)5(2n+2)5 [n⩾0] (3n)504485 2 = [18] 159722338802442489 2 = [35] 25511225512522225551152512152515121 [21] 124588166420914599285 2 = [41] 15522211212125512112255222511252122511225 [21] 150051695267169681235 2 = [41] 22515511252551552115222525221211511125225 [23] 34816980372445012123335 2 = [46] 1212222122255221215111111512151155125251522225 [25] 1102340925268369741032335 2 = [49] 1215155515521525522215211555521512552151515552225 [28] 4638162516046117503822620335 2 = [56] 21512551525255251211125255525551555121211151225555512225 |
1 2 6 | A053882 | A053883 | LINK 2 LINK 10 |
[20] 47130268582155593596 2 = [40] 2221262216626122626662262611111116211216 [26] 51595698572871617009432954 2 = [52] 2662116111222626216162621266666216222222216621166116 |
1 2 7 | A053884 | A053885 | LINK 2 LINK 10 |
[18] 130834904430015239 2 = [35] 17117772217211221211117217772227121 |
1 2 8 | A053886 | A053887 | LINK 2 LINK 10 |
One infinite pattern (3n)59 2 = (1n)28(2n-1)881 [n⩾1] [17] 28616100692061141 2 = [33] 818881218818182112888822882221881 [17] 33350084135098989 2 = [34] 1112228111818181281181888828822121 [19] 1490909832561385391 2 = [37] 2222812128828218222281282181228222881 [20] 34377642169166984891 2 = [40] 1181822281111288118221882821111822281881 |
1 2 9 | A053888 | A053889 | LINK 2 LINK 10 |
[17] 99961098929489127 2 = [34] 9992221299191112291912929211222129 [18] 459556524411439511 2 = [36] 211192199129121999192121999211919121 [27] 145303131149776986249167839 2 = [53] 21112999921929291129929211912291229929191119991929921 |
1 3 4 | A053890 | A053891 | LINK 2 LINK 10 |
[20] 21079405433537116521 2 = [39] 444341333431434111311131411343131143441 [30] 177324875114669443080086908188 2 = [59] 31444111334433114334141133143444444313434111431113141443344 |
1 3 5 | - | - | - | impossible since all 3 digits odd |
1 3 6 | A053892 | A053893 | LINK 2 LINK 10 |
[17] 18266544874814631 2 = [33] 333666661663616663311166611666161 [29] 11537606482136410218512760694 2 = [57] 133116363336636111166666336113333136136363666113311361636 |
1 3 7 | - | - | - | impossible since all 3 digits odd |
1 3 8 | A053894 | A053895 | LINK 2 LINK 10 |
[24] 286074095527510693610891 2 = [47] 81838388131883313833383381811133318888113813881 |
1 3 9 | - | - | - | impossible since all 3 digits odd |
1 4 5 | A053896 | A053897 | LINK 2 LINK 10 |
[14] 73560479506012 2 = [28] 5411144145154411455544144144 |
1 4 6 | A027677 | A027676 | LINK 2 LINK 9 LINK 10 |
[19] 1290017214657004546 2 = [37] 1664144414111416144464164661464666116 [21] 375720828696801774892 2 = [42] 141166141116611464114116414644641441611664 [21] 802565644925350914229 2 = [42] 644111614414444441664646611416446114664441 [22] 4051067284576580130696 2 = [44] 16411146144166666464466464146441416441444416 [23] 10789398111648380852704 2 = [45] 116411111611641646616166611414441166144111616 [30] 105567345643273687982611367608 2 = [59] 11144464466166416111166414141141166144146161144464111641664 |
1 4 7 | A053898 | A053899 | LINK 2 LINK 10 |
[19] 1071033028175028538 2 = [37] 1147111747441771474111741117114417444 [22] 2177492084289725902412 2 = [43] 4741471777144414774147714111744447747417744 |
1 4 8 | A053900 | A053901 | LINK 2 LINK 10 |
[18] 284800189808379191 2 = [35] 81111148114888814414411114441814481 [19] 2117642891144336478 2 = [37] 4484411414414144114118188814881444484 [19] 6435147099182306059 2 = [38] 41411118188114448414441181181148111481 [25] 1346900557360669225841779 2 = [49] 1814141111418481411488184148411114184811141884841 [28] 2209483759119790145920022988 2 = [55] 4881818481814118844811411488844844184118148818448448144 |
1 4 9 | A027675 | A006716 * (* seq by Neil Sloane) |
LINK 2 LINK 9 LINK 4 LINK 10 |
[18] 648070211589107021 2 = [36] 419994999149149944149149944191494441 |
1 5 6 | A053902 | A053903 | LINK 2 LINK 10 |
One infinite pattern (3n)4 2 = (1n+1)(5n)6 [n⩾0] [17] 12472031176057954 2 = [33] 155551561656561551165551166666116 [19] 2482270463831785216 2 = [37] 6161666655611666116165616661556166656 [20] 12516036335682176169 2 = [39] 156651165556116515661615565555551516561 [21] 258100003219026842869 2 = [41] 66615611661661666651111615111161616151161 [23] 74240565428619726479296 2 = [46] 5511661555161166511651661611666516615516655616 |
1 5 7 | - | - | - | impossible since all 3 digits odd |
1 5 8 | A053904 | A053905 | LINK 2 LINK 10 |
[19] 3399291958357679641 2 = [38] 11555185818155188818511188881585888881 [22] 2412237158970509643109 2 = [43] 5818888111118115811551585855811558551185881 |
1 5 9 | - | - | - | impossible since all 3 digits odd |
1 6 7 | A053906 | A053907 | LINK 2 LINK 10 |
[10] 1292931424 2 = [19] 1671671667166667776 |
1 6 8 | A053908 | A053909 | LINK 2 LINK 10 |
[17] 12723468913060546 2 = [33] 161886661181618111866616661818116 [18] 126931550889393381 2 = [35] 16111618611186661611161686166611161 [21] 431495267861269619604 2 = [42] 186188166186668818681818186188818861116816 [25] 1080794204132598414568541 2 = [49] 1168116111686616811868118886618818666111186868681 |
1 6 9 | A053910 | A053911 | LINK 2 LINK 10 |
[19] 3019927482025216937 2 = [37] 9119961996691166966116961161911661969 [19] 4082512947923373236 2 = [38] 16666911969961991191619191116961111696 [21] 411900436901564744737 2 = [42] 169661969919699919691616999616691969199169 [23] 34149670012924966713187 2 = [46] 1166199961991666696199696161116991961919696969 [30] 248216864092061020657513399437 2 = [59] 61611611619696691696969619616966119999999161919199911916969 |
1 7 8 | A053912 | A053913 | LINK 2 LINK 10 |
[9] 105769141 2 = [17] 11187111187877881 [9] 279067891 2 = [17] 77878887787187881 |
1 7 9 | - | - | - | impossible since all 3 digits odd |
1 8 9 | A053914 | A053915 | LINK 2 LINK 10 |
[16] 2969848344609859 2 = [31] 8819999189981919818818919999881 |
2 3 4 | A053916 | A053917 | LINK 2 LINK 10 |
[15] 205483392086668 2 = [29] 42223424423443333243223342224 |
2 3 5 | A053918 | A053919 | LINK 2 LINK 10 |
[18] 159789024443333515 2 = [35] 25532532332552235533223325522255225 [27] 576387476638096486959455635 2 = [54] 332222523225232223533222222253253255253352335533253225 |
2 3 6 | A058457 | A058458 | LINK 2 LINK 10 |
[16] 2514602599284156 2 = [31] 6323226232326633633323632632336 [27] 251462176552105392823457806 2 = [53] 63233226236322223226263332266636366232262662262333636 |
2 3 7 | - | - | - | combination impossible |
2 3 8 | - | - | - | combination impossible |
2 3 9 | A053920 | A053921 | LINK 2 LINK 10 |
[19] 1814641285211195673 2 = [37] 3292922993992939999922923222293922929 [20] 14940646884386874573 2 = [39] 223222929323939222223332232999233932329 |
2 4 5 | A031154 | A031152 | LINK 2 LINK 10 |
Three infinite patterns (6n)5 2 = (4n)(2n+1)5 [n⩾0] (6n)515 2 = (4n)24(2n-1)45225 [n⩾1] 2(3n)5 2 = 5(4n-1)5(2n+1)5 [n⩾1] [22] 1566985170463509665838 2 = [43] 2455442524452554445254444455245254424242244 [22] 5022405325580985229335 2 = [44] 25224555254424242244454444254455442544542225 [22] 5042276720337304556485 2 = [44] 25424554524455524225542255422225542555555225 [24] 156602211177063382566485 2 = [47] 24524252545545555425452252442555424225445255225 [24] 473545618135383472428338 2 = [48] 224245452455222424254455242452522555442545442244 [27] 212706944938912242495946332 2 = [53] 45244244425245444452555552444225545225555452224254224 |
2 4 6 | A053922 | A053923 | LINK 2 LINK 10 |
One infinite pattern (6n)8 2 = (4n)6(2n)4 [n⩾0] [17] 14988743331128338 2 = [33] 224662426646444226244244226642244 [18] 211335426908131668 2 = [35] 44662662666442262666444262424462224 [19] 4964540927663570432 2 = [38] 24646666622446664464662466646224666624 [22] 8015264452445860907338 2 = [44] 64244464242642246466444266646244264622246244 [25] 1562826497869300353470568 2 = [49] 2442426662442422262266222264624646466242442242624 [26] 47144739098275455895604568 2 = [52] 2222626424644462446266642442624422642664422222466624 [27] 163176169897520398456349838 2 = [53] 26626462422424442244464226222466224666246222642626244 [30] 162062538622046218465618335432 2 = [59] 26264266424622222222622644266266266222662426642466466626624 |
2 4 7 | A058459 | A058460 | LINK 2 LINK 10 |
[11] 88002411582 2 = [22] 7744424444247727742724 [17] 47146022358675418 2 = [34] 2222747424244722424422447477474724 |
2 4 8 | A027679 | A027678 | LINK 2 LINK 9 LINK 8 LINK 10 |
[18] 669644852476481662 2 = [36] 448424228448248888288442822222282244 [20] 20597146608802018338 2 = [39] 424242448424484484244824228422488282244 [23] 53710727465081333454522 2 = [46] 2884842244828242284244242842824284482242248484 [25] 2069416058768323727702022 2 = [49] 4282482824288222284288288882288482848444822888484 [27] 149140498954591218312271662 2 = [53] 22242888428424424282282224442842448448442222888242244 [29] 20598117118436403877526792022 2 = [58] 424282428824822822284282828848288484482824448422442848484 |
2 4 9 | A053924 | A053925 | LINK 2 LINK 10 |
[21] 222468490448488507807 2 = [41] 49492229242429222429494944494949499949249 [21] 547259530974381470838 2 = [42] 299492994242299992492444422992424244422244 |
2 5 6 | A030486 | A030484 | LINK 2 LINK 10 |
[18] 237112320688458875 2 = [35] 56222252622266562625655622566265625 [18] 257395128676171075 2 = [35] 66252252266222665256252522666655625 [18] 745355990494250516 2 = [36] 555555552565665265566665252566266256 [19] 7453363177489241484 2 = [38] 55552622655552522252252226565666522256 [20] 80781591501545428925 2 = [40] 6525665525522556666225656625562226655625 [21] 228618071522411733125 2 = [41] 52266222626626566662522622656666222265625 [24] 237750344316525128700475 2 = [47] 56525226222626252566552565525652262562265225625 [24] 516291221749568609228465 2 = [48] 266556625655662226525525225552225265562566256225 [26] 81401637345465395512991484 2 = [52] 6626226562522666562566262626266252566552622656522256 [29] 14920674457351323857264196585 2 = [57] 222626526262256222655556652225555252265566656525525662225 [29] 23508012597117321085533117075 2 = [57] 552626656266226655522226225556662256522626266565656555625 |
2 5 7 | A030487 | A030485 | LINK 2 LINK 10 |
One infinite pattern 1(6n)5 2 = 2(7n)(2n+1)5 [n⩾0] [18] 870185357137045415 2 = [36] 757222555775727275772757755772522225 [26] 52174924557278712520943915 2 = [52] 2722222752557725255755757775775772222257522575527225 |
2 5 8 | A053926 | A053927 | LINK 2 LINK 10 |
[18] 159013392166264585 2 = [35] 25285258888222255288288552225222225 |
2 5 9 | A053928 | A053929 | LINK 2 LINK 10 |
[17] 77170285247817565 2 = [34] 5955252925229529299525595522529225 [19] 9794365502654705173 2 = [38] 95929595599592555525252922555552959929 [22] 1598601020441309256565 2 = [43] 2555525222555995255555255252529952995599225 [26] 30484348812550551609088485 2 = [51] 929295522525252225925225599299529559999252559595225 [26] 76975943837016723668817565 2 = [52] 5925295929599552922952299222959292529595925252529225 |
2 6 7 | A058461 | A058462 | LINK 2 LINK 10 |
[18] 150573163864701424 2 = [35] 22672277676226226672276776667627776 |
2 6 8 | - | - | - | combination impossible |
2 6 9 | A053930 | A053931 | LINK 2 LINK 7 LINK 5 LINK 1 LINK 10 |
[20] 78883604126137785577 2 = [40] 6222622999929222269696699966269229222929 [23] 47567102808870567435673 2 = [46] 2262629269629662226292666922999622262992962929 [26] 26395073915340646948470264 2 = [51] 696699926996296229992699669262629222696929692229696 |
2 7 8 | - | - | - | combination impossible |
2 7 9 | A053932 | A053933 | LINK 2 LINK 10 |
[11] 14907304327 2 = [21] 222227722297792922929 [27] 850281851974525726895170673 2 = [54] 722979227797229279772792797979272222799797729799272929 |
2 8 9 | A053934 | A053935 | LINK 2 LINK 10 |
[13] 5405829167667 2 = [26] 29222988989999289998222889 [26] 17320185602062360469701767 2 = [51] 299988829289888292222928892882898892999989922922289 |
3 4 5 | A053936 | A053937 | LINK 2 LINK 10 |
[20] 21343231796858797962 2 = [39] 455533543534444433554534333443535353444 |
3 4 6 | A053938 | A053939 | LINK 2 LINK 10 |
[17] 66817996351009092 2 = [34] 4464644636363464333646646666664464 [19] 6666680833328031344 2 = [38] 44444633333463334436443663666646446336 |
3 4 7 | A058463 | A058464 | LINK 2 LINK 10 |
[17] 21150351639576462 2 = [33] 447337374477734734334374744437444 [20] 20913496712251033188 2 = [39] 437374344733334774447744773373477443344 [22] 1864878916830083039312 2 = [43] 3477773374437343773773333743737447337433344 [27] 271006150065722262703289312 2 = [53] 73444333373444774773333473377377773344743344373433344 |
3 4 8 | A053940 | A053941 | LINK 2 LINK 10 |
[19] 6952948212333013522 2 = [38] 48343488843384848488834343333834844484 [25] 5906300402396058566810062 2 = [50] 34884384443343843348888488484833488344838384443844 |
3 4 9 | A053942 | A053943 | LINK 2 LINK 10 |
[21] 185605616817891584607 2 = [41] 34449444994349999433343349994949439344449 |
3 5 6 | A053944 | A053945 | LINK 2 LINK 10 |
[17] 23527926717739784 2 = [33] 553563335635333565566365536366656 |
3 5 7 | - | - | - | impossible since all 3 digits odd |
3 5 8 | - | - | - | combination impossible |
3 5 9 | - | - | - | impossible since all 3 digits odd |
3 6 7 | A053946 | A053947 | LINK 2 LINK 10 |
[17] 25226323103806424 2 = [33] 636367377337637773373677663667776 [19] 1932967502917049474 2 = [37] 3736363367333373666777367633763676676 |
3 6 8 | A058465 | A058466 | LINK 2 LINK 10 |
[15] 183539278812156 2 = [29] 33686666866886336386333368336 |
3 6 9 | A053948 | A053949 | LINK 2 LINK 10 |
[23] 18430047920827535573187 2 = [45] 339666666363999366939366969366969936633336969 [26] 31047286456844613647179386 2 = [51] 963933996333366963633963999333393696336393663336996 |
3 7 8 | - | - | - | combination impossible |
3 7 9 | - | - | - | impossible since all 3 digits odd |
3 8 9 | A058467 | A058468 | LINK 2 LINK 10 |
[12] 199974958167 2 = [23] 39989983893893399999889 |
4 5 6 | A030177 | A030176 | LINK 2 LINK 1 LINK 10 |
[17] 25425667278648884 2 = [33] 646464556564556546656456554445456 [21] 237605691124298293112 2 = [41] 56456464454655444665444666454556666644544 [23] 75269219840819770294592 2 = [46] 5665455455445656566644565645546455454464446464 [24] 675754811056988742949784 2 = [48] 456644564666666555445565455644644555565545646656 [26] 25781108305591628417975738 2 = [51] 664665545464645645665646644665564654546645556644644 |
4 5 7 | A053950 | A053951 | LINK 2 LINK 10 |
[16] 8629863583949388 2 = [32] 74474545477575775744575745574544 [29] 27341447393189418631675507588 2 = [57] 747554745554544455555455747745774457774554454557445577744 |
4 5 8 | A053952 | A053953 | LINK 2 LINK 10 |
[15] 767175898056538 2 = [30] 588558858558855585845444545444 [30] 293061185503724726684202222622 2 = [59] 85884858448848555885485448555548484845848584584884848554884 |
4 5 9 | A053954 | A053955 | LINK 2 LINK 10 |
[24] 703957001491895099962643 2 = [48] 495555459949459999994555545994544549499995545449 |
4 6 7 | A053956 | A053957 | LINK 2 LINK 10 |
[18] 253863101778786762 2 = [35] 64446474444746646444646744666444644 [24] 815277035409723028858892 2 = [48] 664676644466466777446466766667744446667647467664 |
4 6 8 | A053958 | A053959 | LINK 2 LINK 10 |
[20] 26204321529981784378 2 = [39] 686666466846666884868486448488884846884 |
4 6 9 | A053960 | A053961 | LINK 2 LINK 10 |
[21] 999997323321167445187 2 = [42] 999994646649499499946646996649944649464969 [23] 22236561446627600040614 2 = [45] 494464664969644944649644494946666694449496996 [25] 9718263579193026119075264 2 = [50] 94444646994669646646646969664664969996646496669696 |
4 7 8 | A053962 | A053963 | LINK 2 LINK 10 |
[19] 9208064263934568938 2 = [38] 84788447488748874848488744487874447844 [20] 22019193553462506122 2 = [39] 484844884744844787448744774844887478884 |
4 7 9 | A053964 | A053965 | LINK 2 LINK 10 |
[10] 8819171038 2 = [20] 77777777797497997444 [27] 865996535661545126193725357 2 = [54] 749949999777797799497449749797947997449449477944777449 |
4 8 9 | A053966 | A053967 | LINK 2 LINK 10 |
One infinite pattern (6n)7 2 = (4n+1)(8n)9 [n⩾0] [10] 6670081667 2 = [20] 44489989444449498889 [26] 30732718558321504090886022 2 = [51] 944499989984998988844994898844848999494444994984484 |
5 6 7 | A053968 | A053969 | LINK 2 LINK 10 |
[18] 815816631091556424 2 = [36] 665556775565576667756557666775667776 [21] 881854102200458483334 2 = [42] 777666657567776675657756675676567555755556 [22] 2562353735836753390526 2 = [43] 6565656667556566576676575665776756666556676 |
5 6 8 | LINK 2 LINK 10 |
Only this one rather trivial solution is known [3] 816 2 = [6] 665856 | ||
5 6 9 | A053970 | A053971 | LINK 2 LINK 10 |
[18] 834023722663550236 2 = [36] 695595569965566559565695699695655696 |
5 7 8 | - | - | - | combination impossible |
5 7 9 | - | - | - | impossible since all 3 digits odd |
5 8 9 | A058469 | A058470 | LINK 2 LINK 10 |
[11] 92496431583 2 = [22] 8555589855588599885889 |
6 7 8 | LINK 2 LINK 10 |
( No rootsolutions under 1025 | ||
6 7 9 | A053972 | A053973 | LINK 2 LINK 10 |
[16] 9831977256725526 2 = [32] 96667776776767999797799699976676 |
6 8 9 | A053974 | A053975 | LINK 2 LINK 10 |
[22] 2588184048685235767383 2 = [43] 6698696669868698868988986669668968886668689 |
7 8 9 | A058471 | A058472 | LINK 2 LINK 10 |
[16] 9949370777987917 2 = [32] 98989978877879888789778997998889 |
I found the following interesting infinite pattern for numbers m such that
the digits of m2 are 0, 2 & 5 which isn't in the mentioned in the table
Examples :
I hope that the pattern and examples are clear.
Best wishes,
Farideh
I also found the following similar patterns a(n, k) for [ 1 < k < n+1 ].
The formula for b(n, k) = a(n, k)2 is more intricate than of b(n).
I wrote the formula of b(n, 2) after the following examples :
b(n, 2) for [ n > 2 ], includes 2n substrings and I separated them with "." and put them
between parentheses as follows.
Examples :
b(3, 2) = a(3, 2)2 =
b(4, 2) = a(4, 2)2 =
Hope that the formula for b(n,2) and the examples are clear.
Best wishes,
Farideh
I also found a very nice formula for b(n, k) :
b(n, k), [ 1 < k < n ] :
and
b(n, n), [ n > 2 ] :
What intricate and beautiful patterns you discovered there! Thanks a lot !
Since the following six numbers are solutions of infinite patterns so they
must not be in the table of sporadic solutions.
1. 4495
2. 4949995
3. 4949994995
4. 4494999499499995
5. 4494999499999995
6. 4494999499999994995
The number 44949994999999949999995 isn't a solution of my infinite pattern.
But are you sure that the last number couldn't be made part of that
infinite pattern as well. It does look so similar to the others, perhaps
an adaptation 'somehow' of your pattern could include this one as well ?
Where k is in the set A(n) = {2^32, 2^42, ..., 2^n2, 2^(n+1)4, 2^(n+1)+2}.
Note that A(n) has n elements and A(2) has only the two last terms.
Since for [ n > 2 ] we have min(A(n)) = 6 and only for [ n = 2 ] min(A(n)) = 4,
I considered the two solutions related to A(2) = {4,10} namely 4494999499499995 &
4494999499499999999995 as two sporadic solutions.
But as you expected we can include these two solutions, specially the first one
which is correspondent to 4 ( the smallest term of A(2) ), in these infinite patterns.
Suppose that the i-th term (in increasing order) of A(n) = A(n,i) now we define :
Examples :
c(2,1) = 44.(92^11).4.(92^21).4.99.4.(9A(2,1)).5
c(2,2) = 44.(92^11).4.(92^21).4.99.4.(9A(2,2)).5
c(3,2) = 44.(92^11).4.(92^21).4.(92^31).4.99.4.(9A(3,2)).5
A(2,1) = 2^(2+2)4 = 4 ; A(2,2) = 2^(2+2)+2 = 10 ; A(3,2) = 2^(3+1)4 = 12
Hence,
c(2,1) = 4494999499499995
c(2,2) = 4494999499499999999995
c(3,2) = 44949994999999949949999999999995
cc(2,1) = 20205020500505205550255005000025
cc(2,2) = 20205020500505250500205050005005000000000025
cc(3,2) = 2020502050500020500505500500002055502550000000500500000000000025
2.
For each natural number n, there exists a number d(n),
where dd(n) = d(n)2 has only three distinct digits 0, 2 & 5.
Note that we have d(n+1) = 5.(03*2^n1).d(n) and number of digits of d(n) equals to
8 + (3*2^0 + 3*2^1 + ... + 3*2^(n-1)) = 3*2^n + 5.
So for the sequence {d(n)} we obtain the following recursion relation.
d(1) = 50049995505, d(n+1) = d(n) + 5*10^(3*2^(n+1)+4).
Examples :
d(2) = 5.(03*2^11).5.(03*2^01).49995505 = 50000050049995505
dd(2) = 2500005005002055502050050520205025
d(3) = 5.(03*2^21).5.(03*2^11).5.(03*2^01).49995505
d(3) = 50000000000050000050049995505
dd(3) = 2500000000005000005005002050505005002055502050050520205025
d(4) = d(3) + 5*10^(3*2^4+4) = 50000000000050000050049995505 + 5*10^52
d(4) = 50000000000000000000000050000000000050000050049995505.
Anne Zahn (email)
Reporting an error within a pattern of 0 1 8 .
[ di 12/6/2021 20:37 ]
Hello,
I found a mistake in the table on this webpage. One of the infinite patterns is wrong.
For triple 0 1 8 there is the pattern 1(0n)4(0n)1 2 = 1(0n)818(0n)8(0n)1 [n>=1] which is not right.
It should be 1(0n)8(0n-1)18(0n)8(0n)1 .
Zhao Hui Du (email)
Update for squares containing at most three distinct digits
[ vr 1-2/3/2024 7:00 ]
[ TOP OF PAGE]