|
[ January 23, 2005 ] [ Last update [ February 3, 2026 ]
List of palindromic areas of primitive Pythagorean triangles
Zakir Seidov (website)
“ I saw before your Palindromic Pythagorean Triples,
and it inspired me to look for palindromic areas.
I've just sent to OEIS the 'all I know' cases of
palindromic areas of primitive Pythagorean triangles.
Hope it'd be interesting to visitors of your great site.”
|
{area, leg a, leg b, hypo c}
{6, 3, 4, 5}, Primitive!
{63336, 336, 377, 505}, Primitive!
{474474, 156, 6083, 6085},Primitive!
{666666, 693, 1924, 2045}, Primitive!
{4053504, 2688, 3016, 4040},
{4244424, 408, 20806, 20810},
{4383834, 1443, 6076, 6245}, Primitive!
{42066024, 8008, 10506, 13210},
{42666624, 5544, 15392, 16360},
{43177134, 3476, 24843, 25085}, Primitive!
{610262016, 12432, 98176, 98960},
{6390000936, 82214, 155448, 175850},
{48576067584, 23168, 4193376, 4193440},
{460962269064, 81073, 11371536, 11371825}, Primitive!
{654513315456, 304928, 4292904, 4303720},
{60490233209406, 5390853, 22441804, 23080205}, Primitive!
|
Note that we now have eight new cases of pal_areas
of primitive Pythagorean triangles (PPTs) !
( primitive means "with no common factors" )
ID Number: A101439
URL: https://oeis.org/A101439
Sequence: 63336,474474,666666,4383834,43177134
Name: Areas of primitive Pythagorean triangles which are palindromes.
Comments: Other triangles are: n=1, a=336, b=377, c=505; n=2, a=156, b=6083,
c=6085; n=4, a=1443, b=6076, c=6245; n=5, a=3476, b=24843, c=25085.
What is the next case?
Example: 666666 is a member, as it is a palindromic number, and is area of
primitive Pythagorean triangle with legs a=693, b=1924, and
hypotenuse c=2045.
Keywords: more,nonn,base,new
Offset: 1
Author(s): Zak Seidov (seidovzf(AT)yahoo.com), Jan 18 2005
ID Number: A101450
URL: https://oeis.org/A101450
Sequence: 6,63336,474474,666666,4053504,4244424,4383834,42066024,
42666624,43177134,610262016,6390000936,48576067584,
460962269064,654513315456,60490233209406
Name: Areas of (not-necessarily-primitive) Pythagorean triangles which
are palindromes.
Comments: Compare areas of primitive Pythagorean triangles which are
palindromes, A101439. Are these lists full? What are the next cases?
Example: 666666 is a member, as it is a palindromic number, and is area of
Pythagorean triangle with legs a=693,b=1924, and hypotenuse c=2045.
See also: Cf. A101439.
Keywords: base,more,nonn,new
Offset: 0
Author(s): Zak Seidov (seidovzf(AT)yahoo.com), Jan 19 2005
|

Did you know that 474474 (156^2 + 6083^2 = 6085^2)
is also the product of three consecutive numbers
namely 77 x 78 x 79.
Note that in the 2nd case hypotenuse 505 is also palindromic!
From Mike Keith's webpage The Number of the Beast
There are only two known Pythagorean triangles
whose area is a repdigit number:
(3, 4, 5) with area 6
(693, 1924, 2045) with area 666666
It is not known whether there are any others, though a computer
search has verified that there are none with area less than 1040.
[see J. Rec. Math, 26(4), Problem 2097 by Monte Zerger]
66666610 remains palindromic when converted to hexadecimal base i.e., A2C2A16

On the internet we can consult a general list with 'leg b'
up to 10000 : Pythagorean Triple Table by Michael Somos

[ February 1, 2026 ]
Alexandru Petrescu delved into the topic by looking for
Primitive Pythagorean Triangles (PPT's) having a repdigital perimeter.
He checked 45597187 PPT's and only eight solutions came out.
|
{perimeter, leg a, leg b, hypo c}
{88888, 15447, 35096, 38345}
{222222, 38181, 88060, 95981}
{222222, 56573, 73164, 92485}
{444444, 213083, 17556, 213805}
{666666, 186417, 203944, 276305}
{888888, 285159, 234520, 369209}
{66666666, 12305537, 25787784, 28573345}
{88888888, 34527759, 16215320, 38145809}
|

All Primitive Pythagorean triples with Palindromic Perimeter < 10^6
(BenVitale Source)
|
{Perimeter, leg a, leg b, hypo c}, Area
{494, 133, 156, 205}, 10374
{646, 68, 285, 293}, 9690
{828, 180, 299, 349}, 26910
{2112, 64, 1023, 1025}, 32736
{2442, 264, 1073, 1105}, 141636
{4664, 792, 1855, 2017}, 734580
{6006, 77, 2964, 2965}, 114114
{8008, 2079, 2600, 3329}, 2702700
{8778, 2280, 2849, 3649}, 3247860
{20002, 1233, 9344, 9425}, 5760576
{20202, 3640, 7881, 8681}, 14343420
{21012, 204, 10403, 10405}, 1061106
{21812, 4123, 8364, 9325}, 17242386
{22022, 5460, 7381, 9181}, 20150130
{22422, 2020, 10101, 10301}, 10202010
{23232, 4800, 8591, 9841}, 20618400
{23532, 1060, 11211, 11261}, 5941830
{24442, 4040, 9801, 10601}, 19798020
{24742, 5421, 8900, 10441}, 24123450
{25152, 6720, 7991, 10421}, 26849760
{25652, 3180, 11011, 11461}, 17507490
{26062, 1413, 12284, 12365}, 8678646
{26162, 4944, 10033, 11185}, 24801576
{26462, 6060, 9301, 11101}, 28182030
{26862, 2220, 12221, 12421}, 13565310
{27772, 5300, 10611, 11861}, 28119150
{28482, 8080, 8601, 11801}, 34748040
{29392, 1503, 13904, 13985}, 10448856
{29592, 6264, 10823, 12505}, 33897636
{29892, 7420, 10011, 12461}, 37140810
{29892, 4611, 12220, 13061}, 28173210
{29992, 3423, 13064, 13505}, 22359036
{40704, 7936, 15423, 17345}, 61198464
{41514, 6545, 16872, 18097}, 55213620
{42224, 1015, 20592, 20617}, 10450440
{42924, 292, 21315, 21317}, 3111990
{43434, 11176, 14193, 18065}, 79310484
{43734, 4925, 19092, 19717}, 47014050
{45154, 633, 22256, 22265}, 7044024
{46364, 10452, 16435, 19477}, 85889310
{46964, 7363, 19116, 20485}, 70375554
{47674, 8865, 18392, 20417}, 81522540
{48384, 12663, 15616, 20105}, 98872704
{48984, 312, 24335, 24337}, 3796260
{49494, 1533, 23956, 24005}, 18362274
{49594, 12056, 16833, 20705}, 101469324
{49794, 12545, 16512, 20737}, 103571520
{60006, 12045, 22468, 25493}, 135313530
{60706, 3585, 28448, 28673}, 50993040
{62626, 2768, 29865, 29993}, 41333160
{63336, 14664, 22127, 26545}, 162235164
{66466, 10688, 26865, 28913}, 143566560
{66766, 3765, 31388, 31613}, 59087910
{67876, 10755, 27548, 29573}, 148139370
{68586, 16744, 23217, 28625}, 194372724
{68786, 15648, 24265, 28873}, 189849360
{80608, 18656, 28167, 33785}, 262741776
{80808, 13727, 32136, 34945}, 220565436
{80808, 6279, 37000, 37529}, 116161500
{81618, 14640, 31889, 35089}, 233427480
{82328, 19327, 28536, 34465}, 275757636
{82628, 16380, 31099, 35149}, 254700810
{83538, 12096, 34697, 36745}, 209847456
{83738, 4777, 39336, 39625}, 93954036
{83838, 12549, 34540, 36749}, 216721230
{86268, 20020, 30099, 36149}, 301290990
{86268, 11739, 36340, 38189}, 313297630
{87278, 3757, 41676, 41845}, 78288366
{87478, 14516, 35037, 37925}, 254298546
{88688, 20976, 30607, 37105}, 321006216
{88888, 15447, 35096, 38345}, 271063956
|

All Pythagorean triples with Palindromic Perimeter ≤ 9999
All Pythagorean triples with Palindromic Perimeter ≤ 29992
All Pythagorean triples with Palindromic Perimeter ≤ 49994
All Pythagorean triples with Palindromic Perimeter ≤ 69996
All Pythagorean triples with Palindromic Perimeter ≤ 89998

|