 Permutable Primes in other bases b (b ≤ 36) and Repunits excluded (using A−Z to represent digit values 10 to 35) 
Base 2  none exist 
Base 3  2, 12, 21 
Base 4  2, 3, 13, 31, 113, 131, 311 
Base 5  2, 3, 12, 21, 23, 32, 34, 43, 14444, 41444, 44144, 44414, 44441 
Base 6  2, 3, 5, 15, 51, 155, 515, 551 
Base 7  2, 3, 5, 14, 16, 23, 25, 32, 41, 52, 56, 61, 65, 155, 166, 515, 551, 616, 661, 1444, 4144, 4414, 4441, 4555, 5455, 5545, 5554, ... 
Base 8  2, 3, 5, 7, 15, 35, 37, 51, 53, 57, 73, 75, 3337, 3373, 3733, 7333, ...

Base 9  2, 3, 5, 7, 12, 14, 18, 21, 25, 41, 47, 52, 74, 78, 81, 87, 122, 212, 221, 788, 878, 887, 4555, 5455, 5545, 5554, 7778, 7787, 7877, 8777, ... 
Base 10  2, 3, 5, 7, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, ... 
Base 11  2, 3, 5, 7, 12, 16, 18, 21, 27, 29, 34, 3A, 43, 49, 56, 61, 65, 67, 72, 76, 81, 89, 92, 94, 98, A3, 117, 139, 171, 193, 1AA, 319, 335, 353, 36A, 391, 3A6, 533, 566, 588, 63A, 656, 665, 6A3, 711, 7AA, 858, 885, 913, 931, A1A, A36, A63, A7A, AA1, AA7, 2777, 7277, 7727, 7772, 9AAA, A9AA, AA9A, AAA9, 7AAAA, A7AAA, AA7AA, AAA7A, AAAA7, ... 
Base 12  2, 3, 5, 7, B, 15, 51, 57, 5B, 75, B5, 117, 11B, 171, 1B1, 711, B11, 555B, 55B5, 5B55, B555, ... 
Base 13  2, 3, 5, 7, B, 14, 16, 1A, 23, 25, 32, 38, 41, 52, 56, 58, 61, 65, 6B, 7A, 7C, 83, 85, 9A, A1, A7, A9, B6, C7, 11B, 133, 155, 1B1, 229, 247, 274, 292, 313, 331, 33B, 388, 3B3, 427, 472, 515, 551, 724, 742, 779, 78A, 797, 7A8, 838, 87A, 883, 8A7, 922, 977, A78, A87, B11, B33, 4445, 4454, 4544, 5444, 6667, 6676, 6766, 7666, ... 
Base 14  2, 3, 5, 7, B, D, 13, 15, 19, 31, 35, 3B, 51, 53, 59, 91, 95, 9B, 9D, B3, B9, BD, D9, DB, 33D, 3D3, D33, 1119, 1191, 1911, 9111, ... 
Base 15  2, 3, 5, 7, B, D, 12, 14, 1E, 21, 27, 2B, 2D, 41, 47, 4D, 72, 74, 78, 87, 8B, B2, B8, D2, D4, E1, 1DD, 227, 272, 44B, 4B4, 722, 77D, 7D7, B44, BEE, D1D, D77, DD1, EBE, EEB, 1444, 4144, 4414, 4441, 7777D, 777D7, 77D77, 7D777, D7777, ... 
Base 16  2, 3, 5, 7, B, D, 17, 1F, 35, 3B, 3D, 53, 59, 71, 95, B3, BF, D3, F1, FB, 115, 11B, 151, 1B1, 377, 511, 55D, 5D5, 737, 773, 7BB, B11, B7B, BB7, BDD, D55, DBD, DDB, ... 
Base 17  2, 3, 5, 7, B, D, 16, 1E, 23, 2D, 32, 38, 3A, 45, 4B, 54, 5G, 61, 6B, 7C, 83, 8D, 8F, 9A, A3, A9, AB, B4, B6, BA, C7, D2, D8, E1, F8, G5, 7AA, 7GG, A7A, AA7, G7G, GG7, 6DDD, D6DD, DD6D, DDD6, ... 
Base 18  2, 3, 5, 7, B, D, H, 1B, 57, 5D, 5H, 75, 7D, B1, D5, D7, H5, 11B, 11H, 1B1, 1DD, 1H1, 55B, 5B5, 7BB, 7HH, B11, B55, B7B, BB7, BBH, BHB, D1D, DD1, H11, H7H, HBB, HH7, BDDD, DBDD, DDBD, DDDB, ... 
Base 19  2, 3, 5, 7, B, D, H, 1A, 1C, 23, 25, 29, 32, 34, 3A, 3E, 3G, 43, 47, 4D, 52, 58, 5C, 5E, 5I, 74, 7G, 7I, 85, 8F, 92, 9A, A1, A3, A9, BE, BI, C1, C5, D4, DG, E3, E5, EB, EH, F8, G3, G7, GD, HE, I5, I7, IB, 113, 122, 131, 1CC, 1FF, 212, 221, 22D, 29E, 2D2, 2E9, 311, 377, 3AA, 44B, 4B4, 737, 773, 77H, 7H7, 92E, 9E2, A3A, AA3, B44, BFF, C1C, CC1, D22, E29, E92, F1F, FBF, FF1, FFB, H77, 2DDD, D2DD, DD2D, DDD2, ... 
Base 20  2, 3, 5, 7, B, D, H, J, 13, 19, 31, 3B, 3D, 3J, 7B, 7H, 91, 9B, 9D, 9H, 9J, B3, B7, B9, BD, D3, D9, DB, DH, H7, H9, HD, HJ, J3, J9, JH, 33H, 3H3, 77D, 7D7, D77, H33, 1113, 1119, 1131, 1191, 1311, 1911, 3111, 9111, ... 
Base 21  2, 3, 5, 7, B, D, H, J, 12, 1A, 1G, 1K, 21, 25, 2B, 2H, 2J, 45, 4D, 52, 54, 58, 85, 8B, 8D, A1, AD, AH, AJ, B2, B8, BK, D4, D8, DA, DK, G1, GH, H2, HA, HG, J2, JA, JK, K1, KB, KD, KJ, 15B, 188, 1AA, 1B5, 1JJ, 1KK, 28D, 2D8, 51B, 5B1, 5BB, 818, 82D, 881, 8D2, A1A, AA1, B15, B51, B5B, BB5, D28, D82, J1J, JJ1, K1K, KK1, 111G, 11G1, 1G11, 444B, 44B4, 4B44, B444, G111, ... 
Base 22  2, 3, 5, 7, B, D, H, J, 19, 1F, 1J, 1L, 35, 37, 53, 5H, 5L, 73, 7D, 91, D7, F1, FH, FJ, H5, HF, J1, JF, L1, L5, 155, 1FF, 33D, 3D3, 515, 551, 55J, 5J5, 77H, 7H7, 9JJ, D33, DFF, F1F, FDF, FF1, FFD, FFH, FHF, H77, HFF, J55, J9J, JJ9, 333H, 33H3, 3H33, H333, ... 
Base 23  2, 3, 5, 7, B, D, H, J, 16, 1K, 27, 2F, 3A, 3K, 49, 4B, 4F, 4L, 5C, 5G, 61, 6J, 72, 7C, 7I, 7K, 8D, 8F, 94, A3, AB, B4, BA, BG, C5, C7, D8, EF, F2, F4, F8, FE, FM, G5, GB, GL, HI, I7, IH, J6, JK, K1, K3, K7, KJ, L4, LG, MF, 133, 166, 1AA, 313, 331, 33D, 3D3, 49I, 4I9, 616, 661, 66H, 6EF, 6FE, 6H6, 94I, 9I4, A1A, AA1, BBH, BHB, D33, DII, DJJ, E6F, EF6, F6E, FE6, H66, HBB, I49, I94, IDI, IID, JDJ, JJD, 2999, 9299, 9929, 9992, BCCC, BIII, CBCC, CCBC, CCCB, IBII, IIBI, IIIB, ... 
Base 24  2, 3, 5, 7, B, D, H, J, N, 1D, 1H, 1J, 57, 5B, 5J, 75, 7B, B5, B7, BH, BJ, D1, H1, HB, HN, J1, J5, JB, JN, NH, NJ, 155, 515, 551, 77H, 7H7, H77, ... 
Base 25  2, 3, 5, 7, B, D, H, J, N, 14, 16, 1G, 29, 2B, 2N, 34, 3E, 41, 43, 47, 49, 61, 67, 6D, 6H, 74, 76, 7I, 7M, 7O, 8B, 92, 94, 9E, 9G, B2, B8, BI, CD, D6, DC, DM, DO, E3, E9, EH, G1, G9, GJ, GL, H6, HE, HI, HO, I7, IB, IH, JG, JO, LG, LM, M7, MD, ML, N2, O7, OD, OH, OJ, 113, 11N, 122, 131, 18E, 199, 1BB, 1E8, 1N1, 1NN, 212, 221, 22L, 289, 298, 2BO, 2GJ, 2JG, 2L2, 2OB, 311, 3EE, 77B, 7B7, 7OO, 81E, 829, 892, 8E1, 919, 928, 982, 991, 9HH, B1B, B2O, B77, BB1, BO2, CCH, CHC, E18, E3E, E81, EE3, G2J, GJ2, H9H, HCC, HH9, IIJ, IJI, J2G, JG2, JII, L22, MMN, MNM, N11, N1N, NMM, NN1, O2B, O7O, OB2, OO7, JMMM, MJMM, MMJM, MMMJ, ... 
Base 26  2, 3, 5, 7, B, D, H, J, N, 13, 15, 1H, 1L, 31, 3N, 3P, 51, 59, 5J, 79, 7B, 7F, 7H, 95, 97, 9N, B7, BL, BP, F7, FJ, H1, H7, HL, J5, JF, L1, LB, LH, LN, N3, N9, NL, P3, PB, 117, 11P, 171, 1P1, 335, 337, 353, 373, 533, 5BB, 5LL, 711, 733, 77J, 7J7, B5B, BB5, J77, L5L, LL5, LLP, LPL, P11, PLL, ... 
Base 27  2, 3, 5, 7, B, D, H, J, N, 14, 1A, 1E, 1G, 1K, 25, 27, 2D, 2H, 2P, 41, 45, 52, 54, 5E, 5M, 72, 78, 7A, 7M, 87, 8D, 8H, 8P, A1, A7, AB, AN, BA, BE, BG, D2, D8, DM, E1, E5, EB, G1, GB, GP, H2, H8, HK, K1, KH, KN, M5, M7, MD, MN, NA, NK, NM, P2, P8, PG, PQ, QP, 1AE, 1EA, 1KK, 22J, 2J2, 77H, 7H7, A1E, AE1, E1A, EA1, H77, HMM, J22, K1K, KK1, MHM, MMH, 2225, 2252, 2522, 5222, ... 
Base 28  2, 3, 5, 7, B, D, H, J, N, 1F, 1P, 3D, 3H, 3N, 59, 5B, 5R, 95, 9B, 9J, 9P, B5, B9, D3, DF, F1, FD, FJ, FN, H3, HN, HR, J9, JF, JP, N3, NF, NH, P1, P9, PJ, R5, RH, 1BB, 33N, 3DD, 3N3, 55D, 5D5, B1B, BB1, BDD, D3D, D55, DBD, DD3, DDB, FFH, FHF, HFF, JJN, JNJ, JRR, N33, NJJ, NPP, PNP, PPN, RJR, RRJ, ... 
Base 29  2, 3, 5, 7, B, D, H, J, N, 12, 18, 1C, 1I, 21, 23, 29, 2D, 2P, 32, 3A, 3E, 3G, 3M, 3Q, 4F, 4L, 56, 5C, 5M, 65, 6H, 6J, 6N, 78, 7K, 7Q, 81, 87, 89, 8P, 92, 98, 9M, A3, AH, AL, AN, BC, BS, C1, C5, CB, CJ, D2, DK, DO, E3, EF, EP, ER, F4, FE, FM, FQ, FS, G3, GN, H6, HA, HS, I1, IJ, IP, J6, JC, JI, JK, JQ, K7, KD, KJ, L4, LA, LM, M3, M5, M9, MF, ML, N6, NA, NG, NO, OD, ON, P2, P8, PE, PI, Q3, Q7, QF, QJ, RE, RS, SB, SF, SH, SR, 16O, 177, 1AM, 1MA, 1O6, 3DR, 3RD, 4GJ, 4JG, 61O, 6KR, 6O1, 6RK, 717, 771, 7DD, 7II, 7OO, 88H, 8H8, A1M, AM1, CCH, CHC, D3R, D7D, DD7, DDJ, DFF, DJD, DR3, EEH, EHE, FDF, FFD, G4J, GJ4, H88, HCC, HEE, HKK, I7I, II7, J4G, JDD, JG4, JOO, K6R, KHK, KKH, KR6, M1A, MA1, O16, O61, O7O, OJO, OO7, OOJ, R3D, R6K, RD3, RK6, 444F, 44F4, 4F44, F444, ... 
Base 30  2, 3, 5, 7, B, D, H, J, N, T, 17, 1B, 1N, 71, 7D, 7J, 7T, B1, BH, BN, BT, D7, DT, HB, J7, JN, N1, NB, NJ, T7, TB, TD, 11B, 1B1, 1NN, 7DD, 7HH, B11, BBD, BDB, BDD, BTT, D7D, DBB, DBD, DD7, DDB, DJJ, H7H, HH7, JDJ, JJD, N1N, NN1, TBT, TTB, ... 
Base 31  2, 3, 5, 7, B, D, H, J, N, T, 1A, 1C, 1M, 25, 29, 2L, 2R, 34, 38, 3A, 3G, 43, 52, 5I, 5Q, 67, 6B, 6D, 76, 7A, 7C, 7G, 7O, 83, 8L, 8T, 92, 9E, 9S, A1, A3, A7, AL, B6, BC, BI, C1, C7, CB, CP, CT, D6, DG, DI, DS, E9, EF, EN, FE, FQ, G3, G7, GD, GR, HU, I5, IB, ID, IJ, JI, JS, KN, KR, L2, L8, LA, LQ, M1, MR, NE, NK, NQ, NU, O7, PC, Q5, QF, QL, QN, R2, RG, RK, RM, S9, SD, SJ, T8, TC, UH, UN, 11H, 11T, 188, 199, 1H1, 1NN, 1T1, 229, 22F, 292, 2F2, 55R, 5CC, 5R5, 7DT, 7QQ, 7TD, 818, 881, 919, 922, 991, 99N, 9GG, 9N9, BKM, BMK, C5C, CC5, D7T, DT7, EEP, EPE, F22, FPR, FRP, G9G, GG9, H11, HHJ, HJH, JHH, KBM, KMB, MBK, MKB, N1N, N99, NN1, NOO, ONO, OON, OPU, OUP, PEE, PFR, POU, PRF, PUO, Q7Q, QQ7, R55, RFP, RPF, T11, T7D, TD7, UOP, UPO, 555Q, 55Q5, 5Q55, 777M, 77M7, 7M77, M777, Q555, 14444, 41444, 44144, 44414, 44441, GGGGP, GGGPG, GGPGG, GPGGG, PGGGG, ... 
Base 32  2, 3, 5, 7, B, D, H, J, N, T, V, 1B, 1L, 1T, 35, 37, 3D, 3H, 53, 57, 5D, 5J, 5L, 5V, 73, 75, 7F, 9J, 9P, 9T, B1, BF, BL, D3, D5, DH, DR, F7, FB, FN, H3, HD, HR, J5, J9, L1, L5, LB, NF, NP, P9, PN, PT, RD, RH, T1, T9, TP, V5, 33D, 3D3, 55H, 5H5, 7PP, D33, H55, P7P, PP7, BDDD, DBDD, DDBD, DDDB, FVVV, RVVV, VFVV, VRVV, VVFV, VVRV, VVVF, VVVR, ... 
Base 33  2, 3, 5, 7, B, D, H, J, N, T, V, 1A, 1E, 1K, 1Q, 25, 27, 2D, 2H, 2N, 4J, 4P, 52, 58, 5E, 5Q, 5S, 5W, 72, 78, 7A, 7W, 85, 87, 8H, A1, A7, AH, AN, AT, D2, DK, DS, DW, E1, E5, EP, ET, GJ, H2, H8, HA, J4, JG, JQ, K1, KD, N2, NA, NS, P4, PE, Q1, Q5, QJ, QT, S5, SD, SN, TA, TE, TQ, W5, W7, WD, 227, 22T, 272, 2T2, 55D, 5D5, 722, 88V, 8V8, AAJ, AJA, ANW, AWN, D55, EET, ETE, JAA, NAW, NWA, T22, TEE, V88, WAN, WNA, 111S, 11S1, 1S11, 5SSS, 777G, 77G7, 7G77, G777, S111, S5SS, SS5S, SSS5, ... 
Base 34  2, 3, 5, 7, B, D, H, J, N, T, V, 13, 17, 19, 1D, 1J, 1R, 1X, 31, 35, 37, 3P, 53, 59, 5B, 5L, 5N, 5T, 71, 73, 7D, 7J, 7P, 7V, 7X, 91, 95, 9B, 9P, 9V, B5, B9, BF, BR, D1, D7, DF, DJ, DL, DP, FB, FD, FV, J1, J7, JD, JR, L5, LD, N5, NR, NT, P3, P7, P9, PD, R1, RB, RJ, RN, RT, T5, TN, TR, TX, V7, V9, VF, VX, X1, X7, XT, XV, 33N, 3BB, 3N3, 5JN, 5NJ, 77X, 7X7, 99J, 9BB, 9J9, 9PP, B3B, B9B, BB3, BB9, BLX, BXL, DDN, DDR, DLV, DND, DRD, DVL, FRT, FTR, J5N, J99, JN5, LBX, LDV, LVD, LXB, N33, N5J, NDD, NJ5, P9P, PP9, RDD, RFT, RTF, TFR, TRF, VDL, VLD, X77, XBL, XLB, 1JJJ, 5777, 7577, 7757, 7775, 7DDD, D7DD, DD7D, DDD7, J1JJ, JJ1J, JJJ1, JPPP, PJPP, PPJP, PPPJ, ... 
Base 35  2, 3, 5, 7, B, D, H, J, N, T, V, 12, 16, 18, 1C, 1I, 1Q, 21, 23, 29, 2D, 2R, 2V, 32, 38, 3M, 3W, 3Y, 4B, 4H, 4N, 61, 6D, 6H, 6N, 6T, 6V, 81, 83, 8D, 8R, 8V, 8X, 92, 9G, 9W, B4, BC, BG, BY, C1, CB, CD, CJ, D2, D6, D8, DC, DO, G9, GB, GX, H4, H6, HI, HM, HO, I1, IH, IN, IT, IV, JC, JQ, M3, MH, MR, N4, N6, NI, NO, NY, OD, OH, ON, Q1, QJ, QR, R2, R8, RM, RQ, T6, TI, V2, V6, V8, VI, VW, W3, W9, WV, WX, X8, XG, XW, Y3, YB, YN, 11V, 19R, 1CC, 1DD, 1R9, 1V1, 22T, 2T2, 33D, 33N, 36Y, 3D3, 3N3, 3Y6, 63Y, 6JO, 6OJ, 6Y3, 88B, 88N, 8B8, 8N8, 91R, 99D, 9D9, 9R1, B88, BBH, BHB, BQQ, BRR, C1C, CC1, D1D, D33, D99, DD1, GJM, GMJ, HBB, J6O, JGM, JMG, JO6, JRR, JVV, JYY, MGJ, MJG, MMV, MVM, N33, N88, NWW, NXX, O6J, OJ6, OOV, OVO, QBQ, QQB, R19, R91, RBR, RJR, RRB, RRJ, T22, V11, VJV, VMM, VOO, VVJ, VXX, WNW, WWN, XNX, XVX, XXN, XXV, Y36, Y63, YJY, YYJ, 222J, 22J2, 2J22, J222, MMMT, MMTM, MTMM, TMMM, ... 
Base 36  2, 3, 5, 7, B, D, H, J, N, T, V, 15, 1B, 1H, 1N, 1V, 51, 5B, 5H, 7H, 7J, 7P, 7T, 7V, B1, B5, BD, BN, BP, DB, DV, H1, H5, H7, HJ, HT, HZ, J7, JH, JP, JZ, N1, NB, NZ, P7, PB, PJ, PT, T7, TH, TP, V1, V7, VD, VZ, ZH, ZJ, ZN, ZV, 155, 1JN, 1NJ, 515, 551, 5DD, 77D, 7D7, BBV, BDD, BHJ, BJH, BVB, D5D, D77, DBD, DD5, DDB, DDZ, DJJ, DZD, DZZ, HBJ, HJB, J1N, JBH, JDJ, JHB, JJD, JJV, JN1, JVJ, N1J, NJ1, VBB, VJJ, ZDD, ZDZ, ZZD, BBBT, BBTB, BTBB, TBBB, ... 
In base 10 and base 12, as well as all bases ≤ 10 and all even bases ≤ 32, every permutable prime is a repunit or a nearrepdigit, i.e. it is a permutation of the integer P(b, n, x, y) = xxxx...xxxyb (n digits, in base b) where x and y are digits which is coprime to b. Besides, x and y must be also coprime (since if there is a prime p divides both x and y, then p also divides the number), so if x = y, then x = y = 1 (this is not true in all bases, but exceptions are rare and could be finite in any given base). 
Theorem: Let P(b, n, x, y) be a permutable prime in base b and let p be a prime such that n ≥ p. If b is a primitive root of p, and p does not divide x or x  y, then n is a multiple of p – 1. (Since b is a primitive root mod p and p does not divide x − y, the p numbers xxxx...xxxy, xxxx...xxyx, xxxx...xyxx, ..., xxxx...xyxx...xxxx (only the b^(p−2) digit is y, others are all x), xxxx...yxxx...xxxx (only the b^(p−1) digit is y, others are all x), xxxx...xxxx (the repdigit with n x's) mod p are all different. That is, one is 0, another is 1, another is 2, ..., the other is p − 1. Thus, since the first p − 1 numbers are all primes, the last number (the repdigit with n x's) must be divisible by p. Since p does not divide x, so p must divide the repunit with n 1's. Since b is a primitive root mod p, the multiplicative order of n mod p is p − 1. Thus, n must be divisible by p − 1) 
Thus, if b = 10, the digits coprime to 10 are {1, 3, 7, 9}. Since 10 is a primitive root mod 7, so if n ≥ 7, then either 7 divides x (in this case, x = 7, since x ∈ {1, 3, 7, 9}) or x − y (in this case, x = y = 1, since x, y ∈ {1, 3, 7, 9}. That is, the prime is a repunit) or n is a multiple of 7 − 1 = 6. Similarly, since 10 is a primitive root mod 17, so if n ≥ 17, then either 17 divides x (not possible, since x ∈ {1, 3, 7, 9}) or x − y (in this case, x = y = 1, since x, y ∈ {1, 3, 7, 9} that is, the prime is a repunit) or n is a multiple of 17 − 1 = 16. Besides, 10 is also a primitive root mod 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, ..., so n ≥ 17 is very impossible (since for this primes p, if n ≥ p, then n is divisible by p − 1), and if 7 ≤ n < 17, then x = 7, or n is divisible by 6 (the only possible n is 12). If b = 12, the digits coprime to 12 are {1, 5, 7, 11}. Since 12 is a primitive root mod 5, so if n ≥ 5, then either 5 divides x (in this case, x = 5, since x ∈ {1, 5, 7, 11}) or x − y (in this case, either x = y = 1 (that is, the prime is a repunit) or x = 1, y = 11 or x = 11, y = 1, since x, y ∈ {1, 5, 7, 11}.) or n is a multiple of 5 − 1 = 4. Similarly, since 12 is a primitive root mod 7, so if n ≥ 7, then either 7 divides x (in this case, x = 7, since x ∈ {1, 5, 7, 11}) or x − y (in this case, x = y = 1, since x, y ∈ {1, 5, 7, 11} that is, the prime is a repunit) or n is a multiple of 7 − 1 = 6. Similarly, since 12 is a primitive root mod 17, so if n ≥ 17, then either 17 divides x (not possible, since x ∈ {1, 5, 7, 11}) or x − y (in this case, x = y = 1, since x, y ∈ {1, 5, 7, 11}. That is, the prime is a repunit) or n is a multiple of 17 − 1 = 16. Besides, 12 is also a primitive root mod 31, 41, 43, 53, 67, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, ..., so n ≥ 17 is very impossible (since for this primes p, if n ≥ p, then n is divisible by p − 1), and if 7 ≤ n < 17, then x = 7 (in this case, since 5 does not divide x or x − y, so n must be divisible by 4) or n is divisible by 6 (the only possible n is 12). 