Palindromic Wing Primes
Palindromic Wing Primes (or PWP's for short) are numbers that
are primes, palindromic in base 10, and consisting of one central digit
surrounded by two wings having an equal amount of identical digits and
different from the central one. E.g.
101
99999199999
333333313333333
7777777777772777777777777
11111111111111111111111111111111411111111111111111111111111111111
|
While setting up this collection of palprimes I realised that perhaps
this kind of integers was already considered under another description.
And so it turned out!
Near-repunit palindromes
Near-repdigit palindromes
are the names used in the sources where I found more PWP's ¬
The Complete List of the Largest Known Primes by Chris Caldwell
The Top Ten Prime Numbers by Rudolf Ondrejka
Palindrome prime number patterns by Harvey Heinz
Liczby pierwsze o szczególnym rozmieszczeniu cyfr by Andrzej Nowicki
Translated in Dutch “Priemgetallen met een speciale rangschikking van cijfers”
Translated in English “Prime numbers with a special arrangement of digits”
In case one should discover more sources I will be most happy
to add them to the list. Just let me know.
[ October 3, 2002 ]
Harvey Dubner (email) informed me that he co-authored an article :
" I think your idea to collect PWP's is a great and worthwhile project.
Most of the work I did on this subject was included in a paper that Chris Caldwell
and I wrote that was published in the
“Journal of Recreational Mathematics”, Volume 28, No. 1, 1996-97, pp. 1-9.
With the new hardware and software that is now available it would be easy to extend
these results. You really do good work. Please keep it up."
[ October 4, 2002 ]
Daniel Heuer (email) started to search at the beginning of 2001 :
" You have a very good initiative. I have studied numbers of the form
p(k,n) = 10^(2n+1)k*10^n1 from n = 1 to 38500 and 0 < k < 10.
if k = 3, 6 or 9 p(k,n)%3 = = 0
result for other value of k is:
k = 1, n = 26, 378, 1246, 1798, 2917, 23034
k = 2, n = 118
k = 4, n = 88, 112, 198, 622, 4228, 10052
k = 5, n = 14, 22, 36, 104, 1136, 17864, 25448
k = 7, n = 1, 8, 9, 352, 530, 697, 1315, 1918, 2874, 5876, 6768
k = 8, n = 1, 5, 13, 43, 169, 181, 1579, 18077, 22652
and I am still continuing..."
[ December 28, 2002 ]
Jeff Heleen prime proved a record PWP with Primo.
His prime (1047691)/3 2*102384 consists of 4769 digits.
" Here is the prime cert for (3)2384_1_(3)2384.
It finished on Christmas day.
I send in 3 parts: Primo116A, Primo116B and Primo116C.
Happy Holidays.
jeff "
Jeff positioned himself at
Rank 4 in
Marcel Martin's
'
primo top-20' with this feat !
[ January 2, 2003 ]
Daniel Heuer made a new PWP world record for the new year...
"109501910475091 is prime.
Have a good year.
Daniel "
[ January 14, 2003 ]
Daniel Heuer just finished scanning the provable PWP's
of the form 102n+1k*10n1 up to n = 50,000 (100,001 digits).
And he is continuing...
Ranges of this form are
(9)w1(9)w
(9)w2(9)w
(9)w4(9)w
(9)w5(9)w
(9)w7(9)w
(9)w8(9)w
[ January 27, 2003 ]
Daniel Heuer found a new PWP.
(9)521408(9)52140 or (10104281-1) - 1052140
" 10104281 1052140 1
is the first PWP with over 100,000 digits."
Some nontrivial combinations can never produce primes since
these generate infinite patterns of products of two factors.
(1)w0(1)w = (10w+1 + 1)(10w - 1)/9
101 x 1 = 101 ( is the only possible prime case when w = 1 )
1001 x 11 = 11011
10001 x 111 = 1110111
...
general formula 1(0)k1 x 1(1)k-21 ; ( k ⩾ 2 )
(1)w2(1)w = (10w+1 - 1)(10w + 1)/9
11 x 11 = 121
101 x 111 = 11211
1001 x 1111 = 1112111
...
general formula 1(0)k1 x 1(1)k1
(3)w2(3)w = (5.10w + 1)(2.10w - 1)/3
17 x 19 = 323
167 x 199 = 33233
1667 x 1999 = 3332333
...
general formula 1(6)k7 x 1(9)k+1
(3)w4(3)w = (5.10w - 1)(2.10w + 1)/3
7 x 49 = 343
67 x 499 = 33433
667 x 4999 = 3334333
...
general formula (6)k7 x 4(9)k+1
[ January 16, 2023 ]
Chen Xinyao draws our attention to the primes AA...AABAA...AA with A=9
The primes AA...AABAA...AA with A=9 are all proven primes (i.e. not merely probable primes),
since N+1 can be trivially near-50% factored, thus they can be proven prime using N+1 primality test
or Brillhart-Lehmer-Selfridge primality test, thus they don't need primality certificates.
PWP Factorization Projects
( n = 2.w + 1 )
Complete list of the factorization of all possible “Palindromic Wing Numbers” can be found here Factorization of AA...AABAA...AA (M. Kamada)
with the exception of 11...11011...11, 11...11211...11, 33...33233...33, 33...33433...33, 44...44144...44, 44...44744...44, 66...66566...66 and 66...66766...66.
Following condition must be imposed that gcd(A,B) = 1, i.e. A and B are coprime, since if A and B have a common factor > 1, then we can divide this factor from the number,
e.g. factor 666...6669666...666 is equivalent to factor 222...2223222...222.
Furthermore these are not explicitly in this Makoto Kamada's page since
11...11011...11 = [ 111...111 ] * [ 1000...0001 ] and general formula Rn * 1(0)n1 [1^^n] * [1][0^^n][1]
11...11211...11 = [ 111...111 ] * [ 1000...0001 ] and general formula Rn * 1(0)n-21 [1^^n] * [1][0^^(n-2)][1]
33...33233...33 = [ 1666...6667 ] * [ 1999...999 ] and general formula 1(6)n7 * 1(9)n+1 [1][6^^n][7] * [1][9^^(n+1)]
33...33433...33 = [ 666...6667 ] * [ 4999...999 ] and general formula (6)n7 * 4(9)n+1 [6^^n][7] * [4][9^^(n+1)]
44...44144...44 = [ 4999...9996 ] * [ 888...8889 ] and general formula 4(9)n6 * (8)n9 [4][9^^n][6] * [8^^n][9]
44...44744...44 = [ 555...5556 ] * [ 7999...999 ] and general formula (5)n6 * 7(9)n+1 [5^^n][6] * [7][9^^(n+1)]
66...66566...66 = [ 1666...666 ] * [ 4000...0001 ] and general formula 1(6)n * 4(0)n-11 [1][6^^n] * [4][0^^(n-1)][1]
66...66766...66 = [ 1333...333 ] * [ 5000...0002 ] and general formula 1(3)n * 5(0)n-12 [1][3^^n] * [5][0^^(n-1)][2]
and their factorization [
111...111 (Repunit) ], [
1000...0001 ], [
1666...6667 ], [
1999...999 ], [
666...6667 ], [
4999...999 ],
[
888...8889 ], [
7999...999 ], [
4000...0001 ] and [
1333...333 ] are already to be found in
Kamada's pages.
Note (Chen Xinyao [ Dec 25, 2022 ] ) :
There is no factorization of 4999...9996 in Kamada's page, because [4][9^^n][6] = [9^^(n+1)][2] / 2 [ 999...9992 ]
There is no factorization of 555...5556 in Kamada's page, because [5^^n][6] = [1][0^^(n+1)][8] / 18 [ 1000...0008 ]
There is no factorization of 1666...666 in Kamada's page, because [1][6^^n] = [8][3^^(n-1)] * 2 [ 8333...333 ]
There is no factorization of 5000...0002 in Kamada's page, because [5][0^^(n-1)][2] = [1][0^^n][4] / 2 [ 1000...0004 ]
(Note: '^^' is symbol for concatenation )
The “PWP” Table
The reference table for Palindromic Wing Primes |
This collection is complete for probable primes up to 40001 digits (by DH) and for proven primes up to 3000 digits. | DB = Darren Bedwell DH = Daniel Heuer HD = Harvey Dubner JH = Jeff Heleen P&B = Propper & Batalov PDG = Patrick De Geest RP = Robert Price
|
PWP | Formula Blue exp = # of digits Accolades = prime exp | Who | When | Status | Output Logs |
¬ ¬ |
|
(1)10(1)1 |
(10{3}1)/9 101 IMPORTANT NOTE |
PDG |
Sep 23 2002 |
PRIME |
View |
A077779 ¬ A107123 ¬ | [ n ⩾ 100001 ] |
(1)13(1)1 |
(10{3}1)/9 + 2*101 |
PDG | Sep 23 2002 | PRIME |
View |
(1)23(1)2 |
(10{5}1)/9 + 2*102 |
PDG | Sep 23 2002 | PRIME |
View |
(1)193(1)19 |
(10391)/9 + 2*1019 |
PDG | Sep 23 2002 | PRIME |
View |
(1)973(1)97 |
(101951)/9 + 2*1097 |
PDG | Sep 23 2002 | PRIME |
View |
(1)98183(1)9818 |
(10196371)/9 + 2*109818 |
DH | Nov 04 2002 | PROBABLE PRIME |
View |
A077780 ¬ A107124 ¬ | [ n ⩾ 20001 ] |
(1)24(1)2 |
(10{5}1)/9 + 3*102 |
PDG | Sep 23 2002 | PRIME |
View |
(1)34(1)3 |
(10{7}1)/9 + 3*103 |
PDG | Sep 23 2002 | PRIME |
View |
(1)324(1)32 |
(10651)/9 + 3*1032 |
PDG | Sep 23 2002 | PRIME |
View |
(1)454(1)45 |
(10911)/9 + 3*1045 |
PDG | Sep 23 2002 | PRIME |
View |
(1)15444(1)1544 |
(10{3089}1)/9 + 3*101544 |
PDG | Sep 23 2002 | PRIME |
View DB |
A077783 ¬ A107125 ¬ | [ n ⩾ 200147 ] |
(1)15(1)1 |
(10{3}1)/9 + 4*101 |
PDG | Sep 23 2002 | PRIME |
View |
(1)75(1)7 |
(10151)/9 + 4*107 |
PDG | Sep 23 2002 | PRIME |
View |
(1)455(1)45 |
(10911)/9 + 4*1045 |
PDG | Sep 23 2002 | PRIME |
View |
(1)1155(1)115 |
(102311)/9 + 4*10115 |
PDG | Sep 23 2002 | PRIME |
View |
(1)6815(1)681 |
(1013631)/9 + 4*10681 |
JH | Sep 29 2002 | PRIME |
View |
(1)12485(1)1248 |
(1024971)/9 + 4*101248 |
JH | Oct 09 2002 | PRIME |
View |
(1)24815(1)2481 |
(1049631)/9 + 4*102481 |
PDG | Sep 23 2002 | PRIME |
View |
(1)26895(1)2689 |
(1053791)/9 + 4*102689 |
PDG | Oct 11 2002 | PRIME |
View |
(1)61985(1)6198 |
(10123971)/9 + 4*106198 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(1)131975(1)13197 |
(10263951)/9 + 4*1013197 |
DH | Nov 06 2002 | PROBABLE PRIME |
View |
(1)601265(1)60126 |
(101202531)/9 + 4*1060126 |
RP | Oct 12 2015 | PROBABLE PRIME |
View |
(1)1000725(1)100072 |
(102001451)/9 + 4*10100072 |
RP | Sep 05 2023 | RECORD PROBABLE PRIME |
View |
A077787 ¬ A107126 ¬ | [ n ⩾ 100001 ] |
(1)106(1)10 |
(10211)/9 + 5*1010 |
PDG | Sep 23 2002 | PRIME |
View |
(1)146(1)14 |
(10{29}1)/9 + 5*1014 |
PDG | Sep 23 2002 | PRIME |
View |
(1)406(1)40 |
(10811)/9 + 5*1040 |
PDG | Sep 23 2002 | PRIME |
View |
(1)596(1)59 |
(101191)/9 + 5*1059 |
PDG | Sep 23 2002 | PRIME |
View |
(1)1606(1)160 |
(103211)/9 + 5*10160 |
PDG | Sep 23 2002 | PRIME |
View |
(1)4126(1)412 |
(108251)/9 + 5*10412 |
PDG | Sep 23 2002 | PRIME |
View |
(1)5606(1)560 |
(1011211)/9 + 5*10560 |
JH | Oct 02 2002 | PRIME |
View |
(1)12896(1)1289 |
(10{2579}1)/9 + 5*101289 |
JH | Oct 07 2002 | PRIME |
View |
(1)18466(1)1846 |
(1036931)/9 + 5*101846 |
PDG | Sep 23 2002 | PRIME |
View DB |
A077789 ¬ A107127 ¬ | [ n ⩾ 100001 ] |
(1)37(1)3 |
(10{7}1)/9 + 6*103 |
PDG | Sep 23 2002 | PRIME |
View |
(1)337(1)33 |
(10{67}1)/9 + 6*1033 |
PDG | Sep 23 2002 | PRIME |
View |
(1)3117(1)311 |
(106231)/9 + 6*10311 |
PDG | Sep 23 2002 | PRIME |
View |
(1)29337(1)2933 |
(10{5867}1)/9 + 6*102933 |
JH | Jun 21 2003 | PRIME |
View |
(1)222357(1)22235 |
(10444711)/9 + 6*1022235 |
RP | Apr 30 2017 | PROBABLE PRIME |
View |
(1)391657(1)39165 |
(10783311)/9 + 6*1039165 |
RP | Apr 30 2017 | PROBABLE PRIME |
View |
(1)415857(1)41585 |
(10831711)/9 + 6*1041585 |
RP | Apr 30 2017 | PROBABLE PRIME |
View |
A077791 ¬ A107648 ¬ | [ n ⩾ 262043 ] |
(1)18(1)1 |
(10{3}1)/9 + 7*101 |
PDG | Sep 23 2002 | PRIME |
View |
(1)48(1)4 |
(1091)/9 + 7*104 |
PDG | Sep 23 2002 | PRIME |
View |
(1)68(1)6 |
(10{13}1)/9 + 7*106 |
PDG | Sep 23 2002 | PRIME |
View |
(1)78(1)7 |
(10151)/9 + 7*107 |
PDG | Sep 23 2002 | PRIME |
View |
(1)3848(1)384 |
(10{769}1)/9 + 7*10384 |
PDG | Sep 23 2002 | PRIME |
View |
(1)6668(1)666 |
(1013331)/9 + 7*10666 |
JH | Oct 02 2002 | PRIME |
View |
(1)6758(1)675 |
(1013511)/9 + 7*10675 |
JH | Oct 02 2002 | PRIME |
View |
(1)31658(1)3165 |
(1063311)/9 + 7*103165 |
DH | Oct 31 2002 | PRIME |
View |
(1)1310208(1)131020 |
(102620411)/9 + 7*10131020 |
RP | Aug 03 2024 | PROBABLE PRIME |
View |
A077795 ¬ A107649 ¬ | [ n ⩾ 26621 ] |
(1)19(1)1 |
(10{3}1)/9 + 8*101 |
PDG | Sep 23 2002 | PRIME |
View |
(1)49(1)4 |
(1091)/9 + 8*104 |
PDG | Sep 23 2002 | PRIME |
View |
(1)269(1)26 |
(10{53}1)/9 + 8*1026 |
PDG | Sep 23 2002 | PRIME |
View |
(1)1879(1)187 |
(103751)/9 + 8*10187 |
PDG | Sep 23 2002 | PRIME |
View |
(1)2269(1)226 |
(104531)/9 + 8*10226 |
PDG | Sep 23 2002 | PRIME |
View |
(1)8749(1)874 |
(1017491)/9 + 8*10874 |
JH | Oct 03 2002 | PRIME |
View |
(1)133099(1)13309 |
(10266191)/9 + 8*1013309 |
DH | Nov 13 2002 | PROBABLE PRIME |
View |
A077775 ¬ A183174 ¬ | [ n ⩾ 200001 ] |
(3)11(3)1 |
(10{3}1)/3 2*101 |
PDG | Sep 23 2002 | PRIME |
View |
(3)31(3)3 |
(10{7}1)/3 2*103 |
PDG | Sep 23 2002 | PRIME |
View |
(3)71(3)7 |
(10151)/3 2*107 |
PDG | Sep 23 2002 | PRIME |
View |
(3)611(3)61 |
(101231)/3 2*1061 |
PDG | Sep 23 2002 | PRIME |
View |
(3)901(3)90 |
(10{181}1)/3 2*1090 |
PDG | Sep 23 2002 | PRIME |
View |
(3)921(3)92 |
(101851)/3 2*1092 |
PDG | Sep 23 2002 | PRIME |
View |
(3)2691(3)269 |
(105391)/3 2*10269 |
PDG | Sep 23 2002 | PRIME |
View |
(3)2981(3)298 |
(105971)/3 2*10298 |
PDG | Sep 23 2002 | PRIME |
View |
(3)3211(3)321 |
(10{643}1)/3 2*10321 |
PDG | Sep 23 2002 | PRIME |
View |
(3)3711(3)371 |
(10{743}1)/3 2*10371 |
PDG | Sep 23 2002 | PRIME |
View |
(3)7761(3)776 |
(10{1553}1)/3 2*10776 |
JH | Sep 28 2002 | PRIME |
View |
(3)15671(3)1567 |
(1031351)/3 2*101567 |
JH | Oct 25 2002 | PRIME |
View |
(3)23841(3)2384 |
(1047691)/3 2*102384 |
JH | Dec 25 2002 | PRIME |
View |
(3)25661(3)2566 |
(1051331)/3 2*102566 |
PDG | Sep 26 2002 | PRIME |
View |
(3)30881(3)3088 |
(1061771)/3 2*103088 |
PDG | Sep 26 2002 | PRIME |
View |
(3)58661(3)5866 |
(10117331)/3 2*105866 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(3)80511(3)8051 |
(10{16103}1)/3 2*108051 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(3)94981(3)9498 |
(10189971)/3 2*109498 |
DH | Nov 04 2002 | PROBABLE PRIME |
View |
(3)126351(3)12635 |
(10252711)/3 2*1012635 |
DH | Nov 07 2002 | PROBABLE PRIME |
View |
(3)245121(3)24512 |
(10490251)/3 2*1024512 |
PDG | Jul 05 2005 | PROBABLE PRIME |
View |
(3)325211(3)32521 |
(10650431)/3 2*1032521 |
RP | Jan 29 2016 | PROBABLE PRIME |
View |
(3)439821(3)43982 |
(10879651)/3 2*1043982 |
RP | Jan 29 2016 | PROBABLE PRIME |
View |
A077784 ¬ A183175 ¬ | [ n ⩾ 269625 ] |
(3)15(3)1 |
(10{3}1)/3 + 2*101 |
PDG | Sep 23 2002 | PRIME |
View |
(3)25(3)2 |
(10{5}1)/3 + 2*102 |
PDG | Sep 23 2002 | PRIME |
View |
(3)175(3)17 |
(10351)/3 + 2*1017 |
PDG | Sep 23 2002 | PRIME |
View |
(3)795(3)79 |
(101591)/3 + 2*1079 |
PDG | Sep 23 2002 | PRIME |
View |
(3)1185(3)118 |
(102371)/3 + 2*10118 |
PDG | Sep 23 2002 | PRIME |
View |
(3)1625(3)162 |
(103251)/3 + 2*10162 |
PDG | Sep 23 2002 | PRIME |
View |
(3)1775(3)177 |
(103551)/3 + 2*10177 |
PDG | Sep 23 2002 | PRIME |
View |
(3)1855(3)185 |
(103711)/3 + 2*10185 |
PDG | Sep 23 2002 | PRIME |
View |
(3)2405(3)240 |
(104811)/3 + 2*10240 |
PDG | Sep 23 2002 | PRIME |
View |
(3)8245(3)824 |
(1016491)/3 + 2*10824 |
JH | Sep 29 2002 | PRIME |
View |
(3)18205(3)1820 |
(1036411)/3 + 2*101820 |
PDG | Sep 23 2002 | PRIME |
View DB |
(3)23545(3)2354 |
(1047091)/3 + 2*102354 |
PDG | Sep 23 2002 | PRIME |
View RC |
(3)1348115(3)134811 |
(10{269623}1)/3 + 2*10134811 |
RP | Aug 03 2024 | PROBABLE PRIME |
View |
A077790 ¬ A183176 ¬ | [ n ⩾ 235417 ] |
(3)17(3)1 |
(10{3}1)/3 + 4*101 |
PDG | Sep 23 2002 | PRIME |
View |
(3)37(3)3 |
(10{7}1)/3 + 4*103 |
PDG | Sep 23 2002 | PRIME |
View |
(3)77(3)7 |
(10151)/3 + 4*107 |
PDG | Sep 23 2002 | PRIME |
View |
(3)117(3)11 |
(10{23}1)/3 + 4*1011 |
PDG | Sep 23 2002 | PRIME |
View |
(3)137(3)13 |
(10271)/3 + 4*1013 |
PDG | Sep 23 2002 | PRIME |
View |
(3)177(3)17 |
(10351)/3 + 4*1017 |
PDG | Sep 23 2002 | PRIME |
View |
(3)297(3)29 |
(10{59}1)/3 + 4*1029 |
PDG | Sep 23 2002 | PRIME |
View |
(3)317(3)31 |
(10631)/3 + 4*1031 |
PDG | Sep 23 2002 | PRIME |
View |
(3)337(3)33 |
(10{67}1)/3 + 4*1033 |
PDG | Sep 23 2002 | PRIME |
View |
(3)777(3)77 |
(101551)/3 + 4*1077 |
PDG | Sep 23 2002 | PRIME |
View |
(3)9337(3)933 |
(10{1867}1)/3 + 4*10933 |
JH | Oct 01 2002 | PRIME |
View |
(3)15557(3)1555 |
(1031111)/3 + 4*101555 |
PDG | Sep 23 2002 | PRIME |
View DB |
(3)117587(3)11758 |
(10235171)/3 + 4*1011758 |
DH | Nov 13 2002 | PROBABLE PRIME |
View |
(3)1177077(3)117707 |
(102354151)/3 + 4*10117707 |
RP | Oct 30 2023 | PROBABLE PRIME |
View |
A077792 ¬ A183177 ¬ | [ n ⩾ 100001 ] |
(3)18(3)1 |
(10{3}1)/3 + 5*101 |
PDG | Sep 23 2002 | PRIME |
View |
(3)78(3)7 |
(10151)/3 + 5*107 |
PDG | Sep 23 2002 | PRIME |
View |
(3)858(3)85 |
(101711)/3 + 5*1085 |
PDG | Sep 23 2002 | PRIME |
View |
(3)948(3)94 |
(101891)/3 + 5*1094 |
PDG | Sep 23 2002 | PRIME |
View |
(3)2738(3)273 |
(10{547}1)/3 + 5*10273 |
PDG | Sep 23 2002 | PRIME |
View |
(3)3568(3)356 |
(107131)/3 + 5*10356 |
PDG | Sep 23 2002 | PRIME |
View |
(3)10778(3)1077 |
(1021551)/3 + 5*101077 |
JH | Oct 11 2002 | PRIME |
View |
(3)17978(3)1797 |
(1035951)/3 + 5*101797 |
PDG | Sep 23 2002 | PRIME |
View DB |
(3)67588(3)6758 |
(10135171)/3 + 5*106758 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(3)302328(3)30232 |
(10604651)/3 + 5*1030232 |
RP | Apr 21 2016 | PROBABLE PRIME |
View |
¬ ¬ | [ n ⩾ 200001 ] searched from july 2005 till january 2006 ! |
(7)1161(7)116 |
7*(10{233}1)/9 6*10116 |
PDG | Sep 23 2002 | PRIME |
View |
A077777 ¬ A183178 ¬ | [ n ⩾ 100001 ] |
(7)12(7)1 |
7*(10{3}1)/9 5*101 |
PDG | Sep 23 2002 | PRIME |
View |
(7)32(7)3 |
7*(10{7}1)/9 5*103 |
PDG | Sep 23 2002 | PRIME |
View |
(7)72(7)7 |
7*(10151)/9 5*107 |
PDG | Sep 23 2002 | PRIME |
View |
(7)102(7)10 |
7*(10211)/9 5*1010 |
PDG | Sep 23 2002 | PRIME |
View |
(7)122(7)12 |
7*(10251)/9 5*1012 |
PDG | Sep 23 2002 | PRIME |
View |
(7)4802(7)480 |
7*(109611)/9 5*10480 |
PDG | Sep 23 2002 | PRIME |
View |
(7)9492(7)949 |
7*(1018991)/9 5*10949 |
JH | Sep 30 2002 | PRIME |
View |
(7)19452(7)1945 |
7*(1038911)/9 5*101945 |
PDG | Sep 23 2002 | PRIME |
View RC |
(7)75482(7)7548 |
7*(10150971)/9 5*107548 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(7)89232(7)8923 |
7*(10178471)/9 5*108923 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
¬ ¬ | [ n ⩾ 20000 ] |
(7)23(7)2 |
7*(10{5}1)/9 4*102 |
PDG | Sep 23 2002 | PRIME |
View |
A077781 ¬ A183179 ¬ | [ n ⩾ 200001 ] |
(7)24(7)2 |
7*(10{5}1)/9 3*102 |
PDG | Sep 23 2002 | PRIME |
View |
(7)34(7)3 |
7*(10{7}1)/9 3*103 |
PDG | Sep 23 2002 | PRIME |
View |
(7)64(7)6 |
7*(10{13}1)/9 3*106 |
PDG | Sep 23 2002 | PRIME |
View |
(7)234(7)23 |
7*(10{47}1)/9 3*1023 |
PDG | Sep 23 2002 | PRIME |
View |
(7)364(7)36 |
7*(10{73}1)/9 3*1036 |
PDG | Sep 23 2002 | PRIME |
View |
(7)694(7)69 |
7*(10{139}1)/9 3*1069 |
PDG | Sep 23 2002 | PRIME |
View |
(7)5614(7)561 |
7*(10{1123}1)/9 3*10561 |
JH | Sep 28 2002 | PRIME |
View |
(7)7234(7)723 |
7*(10{1447}1)/9 3*10723 |
JH | Oct 01 2002 | PRIME |
View |
(7)34384(7)3438 |
7*(1068771)/9 3*103438 |
PDG | Oct 10 2002 | PRIME |
View |
(7)41044(7)4104 |
7*(10{8209}1)/9 3*104104 |
PDG | Oct 10 2002 | PROBABLE PRIME |
View |
(7)90204(7)9020 |
7*(10{18041}1)/9 3*109020 |
DH | Nov 04 2002 | PROBABLE PRIME |
View |
(7)139774(7)13977 |
7*(10279551)/9 3*1013977 |
DH | Nov 13 2002 | PROBABLE PRIME |
View |
(7)196554(7)19655 |
7*(10393111)/9 3*1019655 |
DH | Nov 25 2002 | PROBABLE PRIME |
View |
(7)324004(7)32400 |
7*(10648011)/9 3*1032400 |
RP | Nov 23 2015 | PROBABLE PRIME |
View |
A077785 ¬ A183180 ¬ | [ n ⩾ 211221 ] |
(7)15(7)1 |
7*(10{3}1)/9 2*101 |
PDG | Sep 23 2002 | PRIME |
View |
(7)75(7)7 |
7*(10151)/9 2*107 |
PDG | Sep 23 2002 | PRIME |
View |
(7)135(7)13 |
7*(10271)/9 2*1013 |
PDG | Sep 23 2002 | PRIME |
View |
(7)585(7)58 |
7*(101171)/9 2*1058 |
PDG | Sep 23 2002 | PRIME |
View |
(7)1295(7)129 |
7*(102591)/9 2*10129 |
PDG | Sep 23 2002 | PRIME |
View |
(7)2535(7)253 |
7*(105071)/9 2*10253 |
PDG | Sep 23 2002 | PRIME |
View |
(7)16575(7)1657 |
7*(1033151)/9 2*101657 |
PDG | Sep 23 2002 | PRIME |
View DB |
(7)22445(7)2244 |
7*(1044891)/9 2*102244 |
PDG | Sep 23 2002 | PRIME |
View DB |
(7)24375(7)2437 |
7*(1048751)/9 2*102437 |
PDG | Sep 23 2002 | PRIME |
View |
(7)79245(7)7924 |
7*(10158491)/9 2*107924 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(7)99035(7)9903 |
7*(10198071)/9 2*109903 |
DH | Nov 04 2002 | PROBABLE PRIME |
View |
(7)118995(7)11899 |
7*(10237991)/9 2*1011899 |
DH | Nov 05 2002 | PROBABLE PRIME |
View |
(7)181575(7)18157 |
7*(10363151)/9 2*1018157 |
DH | Nov 18 2002 | PROBABLE PRIME |
View |
(7)189575(7)18957 |
7*(10379151)/9 2*1018957 |
DH | Nov 20 2002 | PROBABLE PRIME |
View |
(7)236655(7)23665 |
7*(10473311)/9 2*1023665 |
RP | Jun 25 2017 | PROBABLE PRIME |
View |
(7)1056095(7)105609 |
7*(10{211219}1)/9 2*10105609 |
RP | Oct 12 2023 | PROBABLE PRIME |
View |
A077788 ¬ A183181 ¬ | [ n ⩾ 150127 ] |
(7)46(7)4 |
7*(1091)/9 104 |
PDG | Sep 23 2002 | PRIME |
View |
(7)56(7)5 |
7*(10{11}1)/9 105 |
PDG | Sep 23 2002 | PRIME |
View |
(7)86(7)8 |
7*(10{17}1)/9 108 |
PDG | Sep 23 2002 | PRIME |
View |
(7)116(7)11 |
7*(10{23}1)/9 1011 |
PDG | Sep 23 2002 | PRIME |
View |
(7)12446(7)1244 |
7*(1024891)/9 101244 |
JH | Oct 16 2002 | PRIME |
View |
(7)16856(7)1685 |
7*(10{3371}1)/9 101685 |
PDG | Sep 23 2002 | PRIME |
View DB |
(7)20096(7)2009 |
7*(10{4019}1)/9 102009 |
PDG | Sep 23 2002 | PRIME |
View DB |
(7)146576(7)14657 |
7*(10293151)/9 1014657 |
DH | Nov 13 2002 | PROBABLE PRIME |
View |
(7)151186(7)15118 |
7*(10302371)/9 1015118 |
DH | Nov 13 2002 | PROBABLE PRIME |
View |
(7)203326(7)20332 |
7*(10406651)/9 1020332 |
RP | Oct 07 2023 | PROBABLE PRIME |
View |
(7)508306(7)50830 |
7*(101016611)/9 1050830 |
RP | Oct 17 2023 | PROBABLE PRIME |
View |
(7)750626(7)75062 |
7*(101501251)/9 1075062 |
RP | Dec 7 2023 | PROBABLE PRIME |
View |
A077793 ¬ A183182 ¬ | [ n ⩾ 227777 ] |
(7)18(7)1 |
7*(10{3}1)/9 + 101 |
PDG | Sep 23 2002 | PRIME |
View |
(7)38(7)3 |
7*(10{7}1)/9 + 103 |
PDG | Sep 23 2002 | PRIME |
View |
(7)398(7)39 |
7*(10{79}1)/9 + 1039 |
PDG | Sep 23 2002 | PRIME |
View |
(7)548(7)54 |
7*(10{109}1)/9 + 1054 |
PDG | Sep 23 2002 | PRIME |
View |
(7)1688(7)168 |
7*(10{337}1)/9 + 10168 |
PDG | Sep 23 2002 | PRIME |
View |
(7)2408(7)240 |
7*(104811)/9 + 10240 |
PDG | Sep 23 2002 | PRIME |
View |
(7)53288(7)5328 |
7*(10{10657}1)/9 + 105328 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(7)61598(7)6159 |
7*(10123191)/9 + 106159 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(7)246758(7)24675 |
7*(10493511)/9 + 1024675 |
RP | Oct 07 2023 | PROBABLE PRIME |
View |
(7)522278(7)52227 |
7*(101044551)/9 + 1052227 |
RP | Oct 30 2023 | PROBABLE PRIME |
View |
(7)1138878(7)113887 |
7*(102277751)/9 + 10113887 |
RP | Aug 03 2024 | PROBABLE PRIME |
View |
A077796 ¬ A183183 ¬ | [ n ⩾ 100001 ] |
(7)19(7)1 |
7*(10{3}1)/9 + 2*101 |
PDG | Sep 23 2002 | PRIME |
View |
(7)29(7)2 |
7*(10{5}1)/9 + 2*102 |
PDG | Sep 23 2002 | PRIME |
View |
(7)89(7)8 |
7*(10{17}1)/9 + 2*108 |
PDG | Sep 23 2002 | PRIME |
View |
(7)199(7)19 |
7*(10391)/9 + 2*1019 |
PDG | Sep 23 2002 | PRIME |
View |
(7)209(7)20 |
7*(10{41}1)/9 + 2*1020 |
PDG | Sep 23 2002 | PRIME |
View |
(7)2129(7)212 |
7*(104251)/9 + 2*10212 |
PDG | Sep 23 2002 | PRIME |
View |
(7)2809(7)280 |
7*(105611)/9 + 2*10280 |
PDG | Sep 23 2002 | PRIME |
View |
(7)8879(7)887 |
7*(1017751)/9 + 2*10887 |
JH | Oct 03 2002 | PRIME |
View |
(7)10219(7)1021 |
7*(1020431)/9 + 2*101021 |
JH | Oct 04 2002 | PRIME |
View |
(7)55159(7)5515 |
7*(10110311)/9 + 2*105515 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(7)81169(7)8116 |
7*(10162331)/9 + 2*108116 |
DH | Oct 31 2002 | PROBABLE PRIME |
View |
(7)118529(7)11852 |
7*(10237051)/9 + 2*1011852 |
DH | Nov 05 2002 | PROBABLE PRIME |
View |
A077776 ¬ A183184 ¬ | [ n ⩾ 68001 ] |
(9)11(9)1 |
(10{3}1) 8*101 |
PDG | Sep 23 2002 | PRIME |
View |
(9)51(9)5 |
(10{11}1) 8*105 |
PDG | Sep 23 2002 | PRIME |
View |
(9)131(9)13 |
(10271) 8*1013 |
PDG | Sep 23 2002 | PRIME |
View |
(9)431(9)43 |
(10871) 8*1043 |
PDG | Sep 23 2002 | PRIME |
View |
(9)1691(9)169 |
(103391) 8*10169 |
PDG | Sep 23 2002 | PRIME |
View |
(9)1811(9)181 |
(103631) 8*10181 |
PDG | Sep 23 2002 | PRIME |
View |
(9)15791(9)1579 |
(1031591) 8*101579 |
PDG | Sep 23 2002 | PRIME |
View |
(9)180771(9)18077 |
(10361551) 8*1018077 |
DH | Jul 21 2001 | PRIME |
View |
(9)226521(9)22652 |
(10453051) 8*1022652 |
DH | Sep 18 2001 | PRIME |
View |
(9)1573631(9)157363 |
(103147271) 8*10157363 |
DB | Jan 8 2013 | PRIME |
View |
A077778 ¬ A115073 ¬ | [ n ⩾ 68001 ] |
(9)12(9)1 |
(10{3}1) 7*101 |
PDG | Sep 23 2002 | PRIME |
View |
(9)82(9)8 |
(10{17}1) 7*108 |
PDG | Sep 23 2002 | PRIME |
View |
(9)92(9)9 |
(10{19}1) 7*109 |
PDG | Sep 23 2002 | PRIME |
View |
(9)3522(9)352 |
(107051) 7*10352 |
PDG | Sep 23 2002 | PRIME |
View |
(9)5302(9)530 |
(10{1061}1) 7*10530 |
JH | Sep 28 2002 | PRIME |
View |
(9)6972(9)697 |
(1013951) 7*10697 |
JH | Sep 28 2002 | PRIME |
View |
(9)13152(9)1315 |
(1026311) 7*101315 |
HD | 1989 | PRIME |
View |
(9)19182(9)1918 |
(1038371) 7*101918 |
HD | 1999 | PRIME |
View |
(9)28742(9)2874 |
(10{5749}1) 7*102874 |
HD | 1999 | PRIME |
View |
(9)58762(9)5876 |
(10117531) 7*105876 |
HD | 1999 | PRIME |
View |
(9)67682(9)6768 |
(10{13537}1) 7*106768 |
HD | 1999 | PRIME |
View |
(9)629382(9)62938 |
(101258771) 7*1062938 |
DB | Oct 31 2010 | PRIME |
View |
(9)1347392(9)134739 |
(102694791) 7*10134739 |
DB | Feb 29 2012 | PRIME |
View |
A077782 ¬ A183185 ¬ | [ n ⩾ 68001 ] |
(9)144(9)14 |
(10{29}1) 5*1014 |
PDG | Sep 23 2002 | PRIME |
View |
(9)224(9)22 |
(10451) 5*1022 |
PDG | Sep 23 2002 | PRIME |
View |
(9)364(9)36 |
(10{73}1) 5*1036 |
PDG | Sep 23 2002 | PRIME |
View |
(9)1044(9)104 |
(102091) 5*10104 |
PDG | Sep 23 2002 | PRIME |
View |
(9)11364(9)1136 |
(10{2273}1) 5*101136 |
JH | Oct 13 2002 | PRIME |
View |
(9)178644(9)17864 |
(10{35729}1) 5*1017864 |
DH | Jul 02 2001 | PRIME |
View |
(9)254484(9)25448 |
(10508971) 5*1025448 |
DH | Oct 29 2001 | PRIME |
View |
A077786 ¬ A183186 ¬ | [ n ⩾ 68001 ] |
(9)885(9)88 |
(101771) 4*1088 |
PDG | Sep 23 2002 | PRIME |
View |
(9)1125(9)112 |
(102251) 4*10112 |
PDG | Sep 23 2002 | PRIME |
View |
(9)1985(9)198 |
(10{397}1) 4*10198 |
PDG | Sep 23 2002 | PRIME |
View |
(9)6225(9)622 |
(1012451) 4*10622 |
JH | Oct 02 2002 | PRIME |
View |
(9)42285(9)4228 |
(1084571) 4*104228 |
PDG | Oct 04 2002 | PRIME |
View |
(9)100525(9)10052 |
(10201051) 4*1010052 |
DH | Mar 28 2001 | PRIME |
View |
(9)558625(9)55862 |
(101117251) 4*1055862 |
DB | Sep 19 2010 | PRIME |
View |
¬ ¬ | [ n ⩾ 68000 ] |
(9)1187(9)118 |
(102371) 2*10118 |
PDG | Sep 23 2002 | PRIME |
View |
(9)1451267(9)145126 |
(102902531) 2*10145126 |
DB | Apr 11 2012 | PRIME |
View |
A077794 ¬ A183187 ¬ | [ n ⩾ 68001 ] |
(9)268(9)26 |
(10{53}1) 1026 |
PDG | Sep 23 2002 | PRIME |
View |
(9)3788(9)378 |
(10{757}1) 10378 |
PDG | Sep 23 2002 | PRIME |
View |
(9)12468(9)1246 |
(1024931) 101246 |
HD | 1989 | PRIME |
View |
(9)17988(9)1798 |
(1035971) 101798 |
PDG | Sep 23 2002 | PRIME |
View |
(9)29178(9)2917 |
(1058351) 102917 |
PDG | Oct 04 2002 | PRIME |
View |
(9)230348(9)23034 |
(10460691) 1023034 |
DH | Sep 22 2001 | PRIME |
View |
(9)475098(9)47509 |
(10950191) 1047509 |
DH | Jan 02 2003 | PRIME |
View |
(9)521408(9)52140 |
(10{104281}1) 1052140 |
DH | Jan 27 2003 | PRIME |
View |
(9)674048(9)67404 |
(101348091) 1067404 |
DB | Nov 24 2010 | PRIME |
View |
(9)9442648(9)944264 |
(1018885291) 10944264 |
P&B | Oct 18 2021 |
RECORD PROVEN PRIME |
View |
Data table for PWP's becoming prime when removing all prime factors 2 and 5
[ July 8, 2023 ]
Data table for the PWP's becoming prime when removing all the prime factors 2 and 5.
By Xinyao Chen.
Form | prime at n |
(2^^k)1(2^^k)/(2^1) | 3, 4, 9, 22, 25, 52, 55, 129, 193, 289, ... |
(2^^k)3(2^^k)/(2^1) | 2, 13, 23, 55, 484, 539, ... |
(2^^k)5(2^^k)/(2^1) | 2, 3, 5, 6, 8, 9, 20, 86, 89, 177, 260, ... |
(2^^k)7(2^^k)/(2^1) | 16, ... |
(2^^k)9(2^^k)/(2^1) | 4, 5, 11, 71, 91, 119, 176, 181, ... |
(4^^k)1(4^^k)/(2^2) | none exists (algebraic factorization) |
(4^^k)3(4^^k)/(2^2) | 20, 130, 245, 251, 527, ... |
(4^^k)5(4^^k)/(2^2) | 3, 7, 9, ... |
(4^^k)7(4^^k)/(2^2) | none exists (algebraic factorization) |
(4^^k)9(4^^k)/(2^2) | 14, 16, 22, 542, 731, ... |
(5^^k)1(5^^k)/(5^1) | 1, 3, ... |
(5^^k)2(5^^k)/(5^1) | 8, 9, 11, 15, 33, 462, 537, ... |
(5^^k)3(5^^k)/(5^1) | 1, 2, 7, 517, ... |
(5^^k)4(5^^k)/(5^1) | 1, 4, 10, 12, 33, 79, 387, 546, ... |
(5^^k)6(5^^k)/(5^1) | 1, 2, 4, 19, 40, 77, 124, 193, 197, 355, 586, 875, ... |
(5^^k)7(5^^k)/(5^1) | 73, 775, ... |
(5^^k)8(5^^k)/(5^1) | 2, 3, 8, 57, 65, 158, 300, ... |
(5^^k)9(5^^k)/(5^1) | 8, 10, 11, 158, ... |
(6^^k)1(6^^k)/(2^1) | 2, 4, 70, 88, 254, ... |
(6^^k)5(6^^k)/(2^1) | none exists (algebraic factorization) |
(6^^k)7(6^^k)/(2^1) | none exists (algebraic factorization) |
(8^^k)1(8^^k)/(2^3) | 85, 127, 220, 780, ... |
(8^^k)3(8^^k)/(2^3) | 13, 19, ... |
(8^^k)5(8^^k)/(2^3) | 6, 816, 818, ... |
(8^^k)7(8^^k)/(2^3) | 4, 123, 547, 676, ... |
(8^^k)9(8^^k)/(2^3) | 10, ... |
Sources Revealed
Neil Sloane's “Integer Sequences” Encyclopedia can be consulted online :
Neil Sloane's Integer Sequences
Various numbers, primes and palindromic primes are categorised as follows :
%N Wing numbers. Start is identical to sequence A046075
%N Palindromic wing primes. under A077798
%N Palindromic wing primes exist for digitlengths a(n). under A077797
Wing numbers otherwise ordered by its wing digit and not its central digit by Amarnath Murthy
%N a(1) = 11; for n > 1, palindromic primes in which a single digit is sandwiched between strings of '1's. A088281
%N a(1) = 11; for n > 1, palindromic primes in which a single digit is sandwiched between strings of '3's. A088282
%N a(1) = 11; for n > 1, palindromic primes in which a single digit is sandwiched between strings of '7's. A088283
%N a(1) = 11; for n > 1, palindromic primes in which a single digit is sandwiched between strings of '9's. A088284
Click here to view some of the author's [P. De Geest] entries to the table.
Click here to view some entries to the table about palindromes.
|
Prime Curios! - site maintained by G. L. Honaker Jr. and Chris Caldwell
101
131
151
181
191
313
353
373
383
727
757
787
797
919
929
11311
1114111
1115111
111181111
777767777
77777677777
99999199999
1111118111111
11111...5...11111 (91-digits)
77777...8...77777 (109-digits)
77777...2...77777 (961-digits)
99999...2...99999 (1061-digits)
99999...8...99999 (2493-digits)
99999...2...99999 (2631-digits)
99999...2...99999 (5749-digits)
All of Daniel Heuer's probable primes above 10000 digits are also
submitted to the PRP TOP records table maintained by Henri & Renaud Lifchitz.
See : http://www.primenumbers.net/prptop/prptop.php
[ TOP OF PAGE]
Patrick De Geest - Belgium - Short Bio - Some Pictures
E-mail address : pdg@worldofnumbers.com