Plateau and Depression Primes (or PDP's for short) are numbers that
are primes, palindromic in base 10, and consisting of a repdigital interior
bordered by two identical single digits D different from the repdigit R.
D_RRR...RRR_D or D(R)nD
We have Plateau Primes when D < R
We have Depression Primes when D > R
E.g.
101 3222223 74444444447 79999999999999999999999999997 |
PDP's sorted by length |
---|
PDP's after division by 2 and 5 |
---|
Some combinations can never produce primes since these
generate infinite patterns of products of at least two factors.
1°) if w is even :one has : 10 = 1 mod 11 hence 10^(w+1) = (1)^(w+1) = 1 mod 11 and thus 10^(w+1)+1 = 0 mod 11 2°) if w is odd :
Suppose there exists an odd p, prime, such that : 10^(w+1)+1 = 0 mod p hence 10^(w+1) = 1 mod p and (10^(w+1))^k = (1)^k mod p but (10^(w+1))^k = 10^(k*(w+1)) hence 10^(k*(w+1)) = (1)^k mod p So if k odd : 10^(k*(w+1)) = 1 mod p Conclusion : If 10^(w+1)+1 is divisible by p, then 10^(k*(w+1))+1, with k odd, is also divisible by p. Examples a) 10^2+1 = 101 prime hence 10^6+1, 10^10+1, 10^14+1, ... are divisible by 101. b) 10^4+1 = 0 mod 73 hence 10^12+1, 10^20+1, 10^28+1, ... are divisible by 73. c) 10^8+1 = 0 mod 17 hence 10^24+1, 10^40+1, 10^56+1, ... are divisible by 17. And so on...
Here are some sources to back up the above statement:http://yves.gallot.pagesperso-orange.fr/primes/math.html (theorem) http://yves.gallot.pagesperso-orange.fr/primes/stat.html (finiteness) http://mathworld.wolfram.com/GeneralizedFermatNumber.html http://primes.utm.edu/glossary/page.php?sort=GeneralizedFermatPrime See also: p. 359 of the Ribenboim's well known book “The New Book of Prime Number Records” See also: p. 426-427 of Riesel's well known book “Prime numbers and computer Methods for factorization”
[ January 23, 2003 ]
David Broadhurst announced a new PDP record formerly at
http://groups.yahoo.com/group/primenumbers/message/11084
4*(102898-1)/3-1
He focused on three patterns that have a nice N^2-1 for PFGW :
My method can handle a(b)a only whenDavid also proved the smallest titanic plateau and depression primes:
b = 2*a +/- 1 .
Since we must restrict a to {1,3,7,9},
I am limited to 1(3)1, 3(5)3, 3(7)3.
In addition to 1(3)_{2897}1
I have proven two smaller titanic primes:
1(3)_{1469}1
3(5)_{1973}3
both of which were in the Ondrejka tables.
I uploaded the helper files for the three PFGW proofs.
To complete the 3 proofs, one should prove that
every factor in these files is prime, but that doesn't take long.
1(7)_{1001}1
9(1)_{1139}9
Primo certificates are available.
[ May 28, 2003 ]
Message from KAMADA Makoto
" We completed factorization of the sequence (8)w9 up to 150-digits.
(8)w9 is factor of plateau and depression number 9(7)w9.
My factorization project page is here. Factorization of near-repdigit numbers http://stdkmd.net/nrr/ Contributions of factorization are welcome.
Cheers,
(email)
http://stdkmd.net
[ August 2, 2003 ]
Message from Patrick De Geest
29*(103036+7)/9
" The largest PDP is now (29*10^3036+7)/9 or
2*(103037-1)/9 + (103036+1) or 3(2)30353 having a prime length of 3037 digits.
It was proved prime with 'Primo 2.1.1' using a 3000 MHz Pentium 4 cpu.
Certificate Primo-B29190474C134-01.out available by simple email request (945 KB).
Total timing = 170h 38mn 53s (around ~7,11 days) "
[ March 2, 2006 ]
Message from Greg Childers
(34*101576843)/9 the largest proven PDP to this date
" Patrick,
I have a new palprime with prime digits for your page at
http://www.worldofnumbers.com/won150.htm.
The proof of the 15769-digit prime (34*10^15768-43)/9 is located
at http://www.pa.uky.edu/~childers/certs/P15769.zip (zip file not available).
The zip file contained a readme.txt detailing the method of proof and
the certificates.
Available zip file (by courtesy of Chen Xinyao) at https://stdkmd.net/nrr/cert/3/#CERT_37773_15768
Thanks,
Greg "
[ March 8, 2009 ]
Message from Serge Batalov
(13*1067038-31)/9 the largest PDP to this date
" Dear Patrick,
I have found a rather big PRP last November, but I guess I never wrote about it to you.
I've reported all other quasi-rep-digit PRPs to M.Kamada. So, here goes :
http://stdkmd.net/nrr/1/14441.htm
(13*10^67038-31)/9 = 1(4)670371 <67039> is PRP. (Serge Batalov / PFGW / Nov 2, 2008)
It is also submitted in the Lifchitz PRP site, because it wasn't there yet,
so I decided that I may have discovered it, really. I realize that there may be
a chance that it is found not for the first time, but anyway, finally decided
to report it to you as well.This is the only PDP number in my collection, all others are ABBBB or ABBBC-type.
Cheers,
Serge Batalov "
[ May 2009 ]
Messages from Serge Batalov (email)
" After a long desert in my PRP mining, I have hit another gem -- (5*10^66394-17)/3
(5*10^66394-17)/3 is 3-PRP! (217.2589s+0.0029s)
(5*10^66394-17)/3 is 23-PRP! (286.7449s+0.0033s)
It is a PD 166...661
and apparently I haven't beaten my own previous one. (13*10^67038-31)/9 "144...441"
This one is out of sequence -- it is a part of the "hopeless" quasi-rep-unit twin prime project
(which runs for more than half a year on 1 cpu, previously on 3; I've pre-sieved all possible pairs
and now PRP-ing slowly... then I'll need a bit of cleanup and after a month or so I will have removed
any possibility of any additional quasi-rep-unit twin primes up to 100000 digits)
P.S. No, it doesn't have a twin prime 166..663. :-)
Because of this number, I will now do this whole 16661 series in order. (For 14441, I've done that.)
I am sieving it now, and then will do 50000 ⩽ n ⩽ 100000
(the trivial test shows that only n=0 and 4 (mod 6) exponents are good)
Maybe I'll continue with all remaining 1xxx1 numbers, maybe not.
My computational resources are now quite limited...
Well... What do you know, here's another one --
(16*10^56082-61)/9 is 3-PRP! (199.1310s+0.0043s)
that's a 17771.
Serge Batalov "
Here's a PRP out of sequence. It's a 76667
(and I have started a run to make the 76667 in sequence to fill the gaps)
(23*10^95326+1)/3 is 3-PRP! (455.4071s+0.0046s)
(23*10^95326+1)/3 is 7-PRP! (562.4393s+4.2830s)
Brillhart-Lehmer-Selfridge test is running now.
Also, 15551 and 17771 were fully tested to n⩽100,000.
Serge
[ June 2009 ]
Messages from Serge Batalov (email)
" By filling the gaps in 76667 found yet another, in sequence
(23*10^81214+1)/3 is 3-PRP! (327.7524s+0.0038s)
It is now tested up to n⩽98,300. These are now the two PRPs, nothing else.
Serge
[ June 10, 2022 ]
Message from Xinyao Chen (email)
Concerning the search limit for the Plateau and Depression Primes ( '^^' is symbol for concatenation )
The current search limit for 1(0^^(n-1))1 = 10^n+1 is n=2^31-1,
since the next possible prime of the form 10^n+1 after 101 is 10^(2^31)+1,
10^n+1 is composite for all 2<n<2^31,
see http://www.prothsearch.com/GFN10.html
( n = w + 1 )
Complete list of the factorization of all possible “Palindromic Depression and Plateau Numbers” can be found here Factorization of ABB...BBA (M. Kamada)
with an exception of 5333...3335, which is on hold for Kamada's page because the script does not support the longer algebraic factor
(i.e. 16*10^(4*n/5) – 8*10^(3*n/5) + 4*10^(2*n/5) – 2*10^(n/5) + 1).
Link https://stdkmd.net/nrr/news2022.htm#NEWS_20220424
Sum of 5th powers, 5(3^^n)5 ('^^' is symbol for concatenation) is (16*10^(n+1)+5)/3, which has sum-of-5th-power factorization if n = 5*m.
Following condition must be imposed that gcd(A,B) = 1, i.e. A and B are coprime, since if A and B have a common factor > 1, then we can divide this factor from the number,
e.g. factor 6999...9996 is equivalent to factor 2333...3332.
Factoring Calculator from 'Number Empire' gives with input (16*10^(5*n+1)+5)/3 :
(5*(5^n*2^(n+1)+1)*(5^(4*n)*2^(4*n+4)5^(3*n)*2^(3*n+3)+5^(2*n)*2^(2*n+2)5^n*2^(n+1)+1))/3
Same exercise in an alternative calculator (link added by PDG).
Factoring Calculator from 'EMath' gives with input (16*10^(5n+1)+5)/3 its answer at the end of the step by step procedure:
5 * (2*10^(n/5)+1) * [ 16*10^(4*n/5) 8*10^(3*n/5) + 4*10^(2*n/5) 2*10^(n/5) + 1 ] / 3
if n is divisible by 5.The reference table for Plateau and Depression Primes | |||||
This collection is complete for probable primes up to 100,000 (ref. RC) digits and for proven primes up to 7363 digits. | DB = David Broadhurst | ||||
PDP | Formula Blue exp = # of digits Accolades = prime exp | Who | When | Status | Output Logs |
¬ | 10n+1 [ n = (# of digits) 1] [n >= 2^31 or 2147483648 (by X. Chen)] | ||||
---|---|---|---|---|---|
1(0)11 | 0*(10{3}1)/9 + (102+1) IMPORTANT NOTE |
JCR | Oct 14 2002 | PRIME | View |
A082697 ¬ A056244 ¬ | (12*10n21)/9 or (4*10^n7)/3 or 4*(10n1)/31 [ n > 249,551 (by RC)] | ||||
1(3)11 | (10{3}1)/3 2*(102+1) | JCR | Oct 14 2002 | PRIME | View |
1(3)31 | (10{5}1)/3 2*(104+1) | JCR | Oct 14 2002 | PRIME | View |
1(3)51 | (10{7}1)/3 2*(106+1) | JCR | Oct 14 2002 | PRIME | View |
1(3)931 | (10951)/3 2*(1094+1) | JCR | Oct 14 2002 | PRIME | View |
1(3)1591 | (101611)/3 2*(10160+1) | JCR | Oct 14 2002 | PRIME | View |
1(3)3591 | (103611)/3 2*(10360+1) | PDG | Nov 19 2002 | PRIME | View |
1(3)14691 | (10{1471}1)/3 2*(101470+1) | DB | Jan 23 2003 | PRIME | View |
1(3)28971 | (1028991)/3 2*(102898+1) | DB | Jan 23 2003 | PRIME | View |
1(3)30931 | (1030951)/3 2*(103094+1) | PDG | Aug 20 2003 | PRIME | View |
1(3)31111 | (1031131)/3 2*(103112+1) | PDG | Sep 01 2003 | PRIME | View |
1(3)156971 | (10156991)/3 2*(1015698+1) | PDG | Jan 13 2003 | PROBABLE PRIME |
View |
1(3)179551 | (10{17957}1)/3 2*(1017956+1) | PDG | Jan 14 2003 | PROBABLE PRIME |
View |
1(3)422611 | (10422631)/3 2*(1042262+1) | PDG | Oct 03 2004 | PROBABLE PRIME |
View |
1(3)1110311 | (101110331)/3 2*(10111032+1) | RC | Apr 14 2011 | PROBABLE PRIME |
View |
1(3)2495491 | (102495511)/3 2*(10249550+1) | SB | Jan 15 2023 | PROBABLE PRIME |
View |
A082698 ¬ A056245 ¬ | (13*10n31)/9 | ||||
1(4)51 | 4*(10{7}1)/9 3*(106+1) | JCR | Oct 14 2002 | PRIME | View |
1(4)651 | 4*(10{67}1)/9 3*(1066+1) | JCR | Oct 14 2002 | PRIME | View |
1(4)12531 | 4*(1012551)/9 3*(101254+1) | PDG | Jul 02 2003 | PRIME | View |
1(4)84051 | 4*(1084071)/9 3*(108406+1) | PDG | Nov 20 2002 | PROBABLE PRIME |
View |
1(4)670371 | 4*(10670391)/9 3*(1067038+1) | SB | Nov 2 2008 | PROBABLE PRIME |
View |
A082699 ¬ A056246 ¬ | (14*10n41)/9 | ||||
1(5)11 | 5*(10{3}1)/9 4*(102+1) | JCR | Oct 14 2002 | PRIME | View |
1(5)31 | 5*(10{5}1)/9 4*(104+1) | JCR | Oct 14 2002 | PRIME | View |
1(5)191 | 5*(10211)/9 4*(1020+1) | JCR | Oct 14 2002 | PRIME | View |
1(5)311 | 5*(10331)/9 4*(1032+1) | JCR | Oct 14 2002 | PRIME | View |
1(5)3991 | 5*(10{401}1)/9 4*(10400+1) | PDG | Nov 20 2002 | PRIME | View |
1(5)5611 | 5*(10{563}1)/9 4*(10562+1) | PDG | Nov 20 2002 | PRIME | View |
1(5)70151 | 5*(1070171)/9 4*(107016+1) | PDG | Nov 21 2002 | PRIME | View |
1(5)376831 | 5*(10376851)/9 4*(1037684+1) | PDG | Oct 11 2004 | PROBABLE PRIME |
View |
1(5)2112611 | 5*(102112631)/9 4*(10211262+1) | SB | Jan 20 2023 | PROBABLE PRIME |
View |
1(5)2227171 | 5*(102227191)/9 4*(10222718+1) | SB | Jan 21 2023 | PROBABLE PRIME |
View |
1(5)2503351 | 5*(102503371)/9 4*(10250336+1) | SB | Jan 22 2023 | PROBABLE PRIME |
View |
A082700 ¬ A056247 ¬ | (15*10n51)/9 or (5*10n17)/3 [ n > 200,000 (by RC)] | ||||
1(6)31 | 2*(10{5}1)/3 5*(104+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)111 | 2*(10{13}1)/3 5*(1012+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)151 | 2*(10{17}1)/3 5*(1016+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)171 | 2*(10{19}1)/3 5*(1018+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)351 | 2*(10{37}1)/3 5*(1036+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)511 | 2*(10{53}1)/3 5*(1052+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)711 | 2*(10{73}1)/3 5*(1072+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)991 | 2*(10{101}1)/3 5*(10100+1) | JCR | Oct 14 2002 | PRIME | View |
1(6)62311 | 2*(1062331)/3 5*(106232+1) | PDG | Nov 22 2002 | PRIME | View |
1(6)240271 | 2*(10{24029}1)/3 5*(1024028+1) | PDG | Oct 15 2004 | PROBABLE PRIME |
View |
1(6)402211 | 2*(10402231)/3 5*(1040222+1) | PDG | Oct 17 2004 | PROBABLE PRIME |
View |
1(6)663931 | 2*(10663951)/3 5*(1066394+1) | SB | May 16 2009 | PROBABLE PRIME |
View |
A082701 ¬ A056248 ¬ | (16*10n61)/9 | ||||
1(7)51 | 7*(10{7}1)/9 6*(106+1) | JCR | Oct 14 2002 | PRIME | View |
1(7)471 | 7*(10491)/9 6*(1048+1) | JCR | Oct 14 2002 | PRIME | View |
1(7)1011 | 7*(10{103}1)/9 6*(10102+1) | JCR | Oct 14 2002 | PRIME | View |
1(7)1911 | 7*(10{193}1)/9 6*(10192+1) | JCR | Oct 14 2002 | PRIME | View |
1(7)3651 | 7*(10{367}1)/9 6*(10366+1) | PDG | Nov 22 2002 | PRIME | View |
1(7)10011 | 7*(1010031)/9 6*(101002+1) | DB | Jan 23 2003 | PRIME | View |
1(7)203631 | 7*(10203651)/9 6*(1020364+1) | PDG | Oct 20 2004 | PROBABLE PRIME |
View |
1(7)374451 | 7*(10{37447}1)/9 6*(1037446+1) | PDG | Oct 21 2004 | PROBABLE PRIME |
View |
1(7)560811 | 7*(10560831)/9 6*(1056082+1) | SB | May 17 2009 | PROBABLE PRIME |
View |
A082702 ¬ A056249 ¬ | (17*10n71)/9 | ||||
1(8)11 | 8*(10{3}1)/9 7*(102+1) | JCR | Oct 14 2002 | PRIME | View |
1(8)71 | 8*(1091)/9 7*(108+1) | JCR | Oct 14 2002 | PRIME | View |
1(8)131 | 8*(10151)/9 7*(1014+1) | JCR | Oct 14 2002 | PRIME | View |
1(8)391 | 8*(10{41}1)/9 7*(1040+1) | JCR | Oct 14 2002 | PRIME | View |
1(8)911 | 8*(10931)/9 7*(1092+1) | JCR | Oct 14 2002 | PRIME | View |
1(8)1271 | 8*(101291)/9 7*(10128+1) | JCR | Oct 14 2002 | PRIME | View |
1(8)8831 | 8*(108851)/9 7*(10884+1) | PDG | Nov 23 2002 | PRIME | View |
1(8)94231 | 8*(1094251)/9 7*(109424+1) | PDG | Dec 11 2002 | PROBABLE PRIME |
View |
1(8)147671 | 8*(10147691)/9 7*(1014768+1) | PDG | Feb 06 2003 | PROBABLE PRIME |
View |
1(8)192571 | 8*(10{19259}1)/9 7*(1019258+1) | PDG | Feb 07 2003 | PROBABLE PRIME |
View |
1(8)312331 | 8*(10312351)/9 7*(1031234+1) | PDG | Nov 17 2004 | PROBABLE PRIME |
View |
A082703 ¬ A056250 ¬ | (18*10n81)/9 or 2*10n9 [ n > 200,000 (by RC)] | ||||
1(9)11 | (10{3}1) 8*(102+1) | JCR | Oct 14 2002 | PRIME | View |
1(9)31 | (10{5}1) 8*(104+1) | JCR | Oct 14 2002 | PRIME | View |
1(9)71 | (1091) 8*(108+1) | JCR | Oct 14 2002 | PRIME | View |
1(9)391 | (10{41}1) 8*(1040+1) | JCR | Oct 14 2002 | PRIME | View |
1(9)851 | (10871) 8*(1086+1) | JCR | Oct 14 2002 | PRIME | View |
1(9)1991 | (102011) 8*(10200+1) | JCR | Oct 14 2002 | PRIME | View |
1(9)7291 | (107311) 8*(10730+1) | PDG | Nov 24 2002 | PRIME | View |
1(9)14591 | (1014611) 8*(101460+1) | PDG | Jul 04 2003 | PRIME | View |
1(9)236711 | (10236731) 8*(1023672+1) | PDG | Nov 25 2004 | PROBABLE PRIME |
View |
1(9)286291 | (10{28631}1) 8*(1028630+1) | PDG | Nov 26 2004 | PROBABLE PRIME |
View |
A082704 ¬ A056251 ¬ | (28*10n+17)/9 | ||||
3(1)13 | (10{3}1)/9 + 2*(102+1) | JCR | Oct 14 2002 | PRIME | View |
3(1)113 | (10{13}1)/9 + 2*(1012+1) | JCR | Oct 14 2002 | PRIME | View |
3(1)133 | (10151)/9 + 2*(1014+1) | JCR | Oct 14 2002 | PRIME | View |
3(1)293 | (10{31}1)/9 + 2*(1030+1) | JCR | Oct 14 2002 | PRIME | View |
3(1)1033 | (101051)/9 + 2*(10104+1) | JCR | Oct 14 2002 | PRIME | View |
3(1)1253 | (10{127}1)/9 + 2*(10126+1) | JCR | Oct 14 2002 | PRIME | View |
3(1)3413 | (103431)/9 + 2*(10342+1) | PDG | Nov 25 2002 | PRIME | View |
3(1)5993 | (10{601}1)/9 + 2*(10600+1) | PDG | Nov 25 2002 | PRIME | View |
3(1)98233 | (1098251)/9 + 2*(109824+1) | PDG | Dec 14 2002 | PROBABLE PRIME |
View |
A082705 ¬ A056252 ¬ | (29*10n+7)/9 | ||||
3(2)53 | 2*(10{7}1)/9 + (106+1) | JCR | Oct 14 2002 | PRIME | View |
3(2)73 | 2*(1091)/9 + (108+1) | JCR | Oct 14 2002 | PRIME | View |
3(2)8933 | 2*(108951)/9 + (10894+1) | PDG | Nov 25 2002 | PRIME | View |
3(2)15233 | 2*(1015251)/9 + (101524+1) | PDG | Jul 06 2003 | PRIME | View |
3(2)30353 | 2*(10{3037}1)/9 + (103036+1) | PDG | Aug 02 2003 | PRIME | View |
3(2)211553 | 2*(10{21157}1)/9 + (1021156+1) | PDG | Apr 16 2005 | PROBABLE PRIME |
View |
A082706 ¬ A056253 ¬ | (31*10n13)/9 | ||||
3(4)53 | 4*(10{7}1)/9 (106+1) | JCR | Oct 14 2002 | PRIME | View |
3(4)113 | 4*(10{13}1)/9 (1012+1) | JCR | Oct 14 2002 | PRIME | View |
3(4)4913 | 4*(104931)/9 (10492+1) | PDG | Nov 26 2002 | PRIME | View |
3(4)55673 | 4*(10{5569}1)/9 (105568+1) | PDG | Nov 26 2002 | PRIME | View |
3(4)247553 | 4*(10247571)/9 (1024756+1) | PDG | Apr 17 2005 | PROBABLE PRIME |
View |
A082707 ¬ A056254 ¬ | (32*10n23)/9 or 32*(10n1)/9+1 | ||||
3(5)13 | 5*(10{3}1)/9 2*(102+1) | JCR | Oct 14 2002 | PRIME | View |
3(5)73 | 5*(1091)/9 2*(108+1) | JCR | Oct 14 2002 | PRIME | View |
3(5)1393 | 5*(101411)/9 2*(10140+1) | JCR | Oct 14 2002 | PRIME | View |
3(5)2293 | 5*(102311)/9 2*(10230+1) | JCR | Oct 14 2002 | PRIME | View |
3(5)4253 | 5*(104271)/9 2*(10426+1) | PDG | Nov 27 2002 | PRIME | View |
3(5)4613 | 5*(10{463}1)/9 2*(10462+1) | PDG | Nov 27 2002 | PRIME | View |
3(5)7253 | 5*(10{727}1)/9 2*(10726+1) | PDG | Nov 27 2002 | PRIME | View |
3(5)19733 | 5*(1019751)/9 2*(101974+1) | DB | Jan 23 2003 | PRIME | View |
3(5)72293 | 5*(1072311)/9 2*(107230+1) | PDG | Nov 28 2002 | PRIME | View |
3(5)458593 | 5*(10458611)/9 2*(1045860+1) | PDG | May 16 2005 | PROBABLE PRIME |
View |
3(5)473033 | 5*(10473051)/9 2*(1047304+1) | PDG | May 17 2005 | PROBABLE PRIME |
View |
3(5)2838253 | 5*(102838271)/9 2*(10283826+1) | SB | Jan 17 2023 | PROBABLE PRIME |
View |
A082708 ¬ A056255 ¬ | (34*10n43)/9 or 34*(10n1)/91 | ||||
3(7)13 | 7*(10{3}1)/9 4*(102+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)133 | 7*(10151)/9 4*(1014+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)533 | 7*(10551)/9 4*(1054+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)673 | 7*(10691)/9 4*(1068+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)833 | 7*(10851)/9 4*(1084+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)853 | 7*(10871)/9 4*(1086+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)1553 | 7*(10{157}1)/9 4*(10156+1) | JCR | Oct 14 2002 | PRIME | View |
3(7)27653 | 7*(10{2767}1)/9 4*(102766+1) | PDG | Jul 21 2003 | PRIME | View |
3(7)33793 | 7*(1033811)/9 4*(103380+1) | PDG | Oct 09 2003 | PRIME | View |
3(7)38753 | 7*(10{3877}1)/9 4*(103876+1) | PDG | Nov 28 2002 | PRIME | View RC |
3(7)52073 | 7*(10{5209}1)/9 4*(105208+1) | PDG | Nov 28 2002 | PRIME | View RC |
3(7)107453 | 7*(10107471)/9 4*(1010746+1) | PDG | Dec 20 2002 | PROBABLE PRIME |
View |
3(7)157673 | 7*(10157691)/9 4*(1015768+1) | GC | Feb 28 2006 | RECORD PROVEN PRIME |
View |
3(7)313153 | 7*(10313171)/9 4*(1031316+1) | PDG | May 18 2005 | PROBABLE PRIME |
View |
3(7)409573 | 7*(10409591)/9 4*(1040958+1) | PDG | May 20 2005 | PROBABLE PRIME |
View |
3(7)458033 | 7*(10458051)/9 4*(1045804+1) | PDG | May 22 2005 | PROBABLE PRIME |
View |
3(7)465653 | 7*(10{46567}1)/9 4*(1046566+1) | PDG | May 22 2005 | PROBABLE PRIME |
View |
3(7)510073 | 7*(10510091)/9 4*(1051008+1) | RC | Sep 20 2010 | PROBABLE PRIME |
View |
3(7)801613 | 7*(10801631)/9 4*(1080162+1) | RC | Dec 13 2010 | PROBABLE PRIME |
View |
A082709 ¬ A056256 ¬ | (35*10n53)/9 | ||||
3(8)13 | 8*(10{3}1)/9 5*(102+1) | JCR | Oct 14 2002 | PRIME | View |
3(8)113 | 8*(10{13}1)/9 5*(1012+1) | JCR | Oct 14 2002 | PRIME | View |
3(8)293 | 8*(10{31}1)/9 5*(1030+1) | JCR | Oct 14 2002 | PRIME | View |
3(8)593 | 8*(10{61}1)/9 5*(1060+1) | JCR | Oct 14 2002 | PRIME | View |
3(8)1153 | 8*(101171)/9 5*(10116+1) | JCR | Oct 14 2002 | PRIME | View |
3(8)2893 | 8*(102911)/9 5*(10290+1) | JCR | Oct 14 2002 | PRIME | View |
3(8)6313 | 8*(106331)/9 5*(10632+1) | PDG | Nov 29 2002 | PRIME | View |
3(8)10633 | 8*(1010651)/9 5*(101064+1) | PDG | Feb 02 2003 | PRIME | View |
3(8)14933 | 8*(1014951)/9 5*(101494+1) | PDG | Jul 05 2003 | PRIME | View |
3(8)54313 | 8*(1054331)/9 5*(105432+1) | PDG | Nov 29 2002 | PRIME | View |
3(8)73613 | 8*(1073631)/9 5*(107362+1) | PDG | Nov 29 2002 | PRIME | View |
A082710 ¬ ¬ | (64*10n+53)/9 [ n > 1,200,000 (by SB)] | ||||
7(1)109057 | (10109071)/9 + 6*(1010906+1) | JKA | Oct 17 2002 | PRIME | View |
7(1)4992097 | (104992111)/9 + 6*(10499210+1) | SB | Mar 01 2015 | PROBABLE PRIME |
View |
A082711 ¬ A056257 ¬ | (65*10n+43)/9 | ||||
7(2)17 | 2*(10{3}1)/9 + 5*(102+1) | JCR | Oct 14 2002 | PRIME | View |
7(2)37 | 2*(10{5}1)/9 + 5*(104+1) | JCR | Oct 14 2002 | PRIME | View |
7(2)77 | 2*(1091)/9 + 5*(108+1) | JCR | Oct 14 2002 | PRIME | View |
7(2)277 | 2*(10{29}1)/9 + 5*(1028+1) | JCR | Oct 14 2002 | PRIME | View |
7(2)637 | 2*(10651)/9 + 5*(1064+1) | JCR | Oct 14 2002 | PRIME | View |
7(2)7237 | 2*(107251)/9 + 5*(10724+1) | PDG | Nov 29 2002 | PRIME | View |
7(2)17857 | 2*(10{1787}1)/9 + 5*(101786+1) | PDG | Jul 09 2003 | PRIME | View |
7(2)72757 | 2*(1072771)/9 + 5*(107276+1) | PDG | Nov 30 2002 | PRIME | View |
7(2)194617 | 2*(10{19463}1)/9 + 5*(1019462+1) | PDG | Mar 16 2003 | PROBABLE PRIME |
View |
7(2)242137 | 2*(10242151)/9 + 5*(1024214+1) | PDG | Apr 21 2005 | PROBABLE PRIME |
View |
7(2)517777 | 2*(10517791)/9 + 5*(1051778+1) | RC | Sep 21 2010 | PROBABLE PRIME |
View |
7(2)1313917 | 2*(101313931)/9 + 5*(10131392+1) | TB | Jan 11 2023 | PROBABLE PRIME |
View |
A082712 ¬ A056258 ¬ | (67*10n+23)/9 | ||||
7(4)97 | 4*(10{11}1)/9 + 3*(1010+1) | JCR | Oct 14 2002 | PRIME | View |
7(4)297 | 4*(10{31}1)/9 + 3*(1030+1) | JCR | Oct 14 2002 | PRIME | View |
7(4)1197 | 4*(101211)/9 + 3*(10120+1) | JCR | Oct 14 2002 | PRIME | View |
7(4)4837 | 4*(104851)/9 + 3*(10484+1) | PDG | Nov 30 2002 | PRIME | View |
7(4)14857 | 4*(10{1487}1)/9 + 3*(101486+1) | PDG | Jul 05 2003 | PRIME | View |
7(4)15777 | 4*(10{1579}1)/9 + 3*(101578+1) | PDG | Jul 06 2003 | PRIME | View |
7(4)136717 | 4*(10136731)/9 + 3*(1013672+1) | PDG | Mar 17 2003 | PROBABLE PRIME |
View |
7(4)138097 | 4*(10138111)/9 + 3*(1013810+1) | PDG | Mar 17 2003 | PROBABLE PRIME |
View |
7(4)150937 | 4*(10150951)/9 + 3*(1015094+1) | PDG | Mar 18 2003 | PROBABLE PRIME |
View |
7(4)727717 | 4*(10727731)/9 + 3*(1072772+1) | RC | Nov 12 2010 | PROBABLE PRIME |
View |
7(4)942117 | 4*(10942131)/9 + 3*(1094212+1) | RC | Feb 22 2011 | PROBABLE PRIME |
View |
7(4)2075557 | 4*(10{207557}1)/9 + 3*(10207556+1) | SB | Jan 13 2023 | PROBABLE PRIME |
View |
7(4)11166757 | 4*(10{1116677}1)/9 + 3*(101116676+1) | RPSB | Jan 22 2023 | RECORD PROBABLE PRIME |
View |
A082713 ¬ A056259 ¬ | (68*10n+13)/9 | ||||
7(5)17 | 5*(10{3}1)/9 + 2*(102+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)37 | 5*(10{5}1)/9 + 2*(104+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)97 | 5*(10{11}1)/9 + 2*(1010+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)197 | 5*(10211)/9 + 2*(1020+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)217 | 5*(10{23}1)/9 + 2*(1022+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)577 | 5*(10{59}1)/9 + 2*(1058+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)737 | 5*(10751)/9 + 2*(1074+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)817 | 5*(10{83}1)/9 + 2*(1082+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)2077 | 5*(102091)/9 + 2*(10208+1) | JCR | Oct 14 2002 | PRIME | View |
7(5)3497 | 5*(103511)/9 + 2*(10350+1) | PDG | Nov 30 2002 | PRIME | View |
7(5)4217 | 5*(104231)/9 + 2*(10422+1) | PDG | Nov 30 2002 | PRIME | View |
7(5)38117 | 5*(1038131)/9 + 2*(103812+1) | PDG | Nov 30 2002 | PRIME | View RC |
7(5)39817 | 5*(1039831)/9 + 2*(103982+1) | PDG | Nov 30 2002 | PRIME | View RC |
7(5)209237 | 5*(10209251)/9 + 2*(1020924+1) | PDG | Apr 23 2005 | PROBABLE PRIME |
View |
7(5)237857 | 5*(10237871)/9 + 2*(1023786+1) | PDG | Apr 23 2005 | PROBABLE PRIME |
View |
7(5)388517 | 5*(10388531)/9 + 2*(1038852+1) | PDG | May 04 2005 | PROBABLE PRIME |
View |
7(5)560417 | 5*(10560431)/9 + 2*(1056042+1) | RC | Sep 29 2010 | PROBABLE PRIME |
View |
7(5)685037 | 5*(10685051)/9 + 2*(1068504+1) | RC | Oct 30 2010 | PROBABLE PRIME |
View |
7(5)744337 | 5*(10744351)/9 + 2*(1074434+1) | RC | Nov 18 2010 | PROBABLE PRIME |
View |
7(5)2055097 | 5*(102055111)/9 + 2*(10205510+1) | SB | Jan 13 2023 | PROBABLE PRIME |
View |
A082714 ¬ A056260 ¬ | (69*10n+3)/9 or (23*10n+1)/3 [ n > 700,000 (by RC)] | ||||
7(6)37 | 2*(10{5}1)/3 + (104+1) | JCR | Oct 14 2002 | PRIME | View |
7(6)57 | 2*(10{7}1)/3 + (106+1) | JCR | Oct 14 2002 | PRIME | View |
7(6)537 | 2*(10551)/3 + (1054+1) | JCR | Oct 14 2002 | PRIME | View |
7(6)957 | 2*(10{97}1)/3 + (1096+1) | JCR | Oct 14 2002 | PRIME | View |
7(6)4537 | 2*(104551)/3 + (10454+1) | PDG | Dec 01 2002 | PRIME | View |
7(6)5737 | 2*(105751)/3 + (10574+1) | PDG | Dec 01 2002 | PRIME | View |
7(6)33837 | 2*(1033851)/3 + (103384+1) | PDG | Oct 25 2003 | PRIME | View |
7(6)114397 | 2*(10114411)/3 + (1011440+1) | PDG | Mar 22 2003 | PROBABLE PRIME |
View |
7(6)126237 | 2*(10126251)/3 + (1012624+1) | PDG | Mar 22 2003 | PROBABLE PRIME |
View |
7(6)194457 | 2*(10{19447}1)/3 + (1019446+1) | PDG | Mar 25 2003 | PROBABLE PRIME |
View |
7(6)354597 | 2*(10{35461}1)/3 + (1035460+1) | PDG | Jun 08 2005 | PROBABLE PRIME |
View |
7(6)812137 | 2*(10812151)/3 + (1081214+1) | SB | Jun 08 2009 | PROBABLE PRIME |
View |
7(6)953257 | 2*(10{95327}1)/3 + (1095326+1) | SB | May 27 2009 | PROBABLE PRIME |
View |
A082715 ¬ A056262 ¬ | (71*10n17)/9 | ||||
7(8)17 | 8*(10{3}1)/9 (102+1) | JCR | Oct 14 2002 | PRIME | View |
7(8)37 | 8*(10{5}1)/9 (104+1) | JCR | Oct 14 2002 | PRIME | View |
7(8)857 | 8*(10871)/9 (1086+1) | JCR | Oct 14 2002 | PRIME | View |
7(8)1117 | 8*(10{113}1)/9 (10112+1) | JCR | Oct 14 2002 | PRIME | View |
7(8)1697 | 8*(101711)/9 (10170+1) | JCR | Oct 14 2002 | PRIME | View |
7(8)5657 | 8*(105671)/9 (10566+1) | PDG | Dec 02 2002 | PRIME | View |
7(8)16877 | 8*(1016891)/9 (101688+1) | PDG | Jul 07 2003 | PRIME | View |
7(8)89017 | 8*(1089031)/9 (108902+1) | PDG | Jan 03 2003 | PROBABLE PRIME |
View |
7(8)1158097 | 8*(10{115811}1)/9 (10115810+1) | RC | Aug 05 2011 | PROBABLE PRIME |
View |
7(8)1657157 | 8*(101657171)/9 (10165716+1) | SB | Jan 19 2023 | PROBABLE PRIME |
View |
A082716 ¬ A056263 ¬ | (72*10n27)/9 or 8*10n3 [ n > 219,740 (by RC)] | ||||
7(9)17 | (10{3}1) 2*(102+1) | JCR | Oct 14 2002 | PRIME | View |
7(9)37 | (10{5}1) 2*(104+1) | JCR | Oct 14 2002 | PRIME | View |
7(9)277 | (10{29}1) 2*(1028+1) | JCR | Oct 14 2002 | PRIME | View |
7(9)1557 | (10{157}1) 2*(10156+1) | JCR | Oct 14 2002 | PRIME | View |
7(9)3217 | (103231) 2*(10322+1) | PDG | Dec 02 2002 | PRIME | View |
7(9)3517 | (10{353}1) 2*(10352+1) | PDG | Dec 02 2002 | PRIME | View |
7(9)12117 | (10{1213}1) 2*(101212+1) | PDG | Jun 30 2003 | PRIME | View |
7(9)12837 | (1012851) 2*(101284+1) | PDG | Jul 03 2003 | PRIME | View |
7(9)79837 | (1079851) 2*(107984+1) | PDG | Jan 07 2003 | PROBABLE PRIME |
View |
7(9)151917 | (10{15193}1) 2*(1015192+1) | PDG | Mar 28 2003 | PROBABLE PRIME |
View |
7(9)847717 | (10847731) 2*(1084772+1) | RC | Jan 3 2011 | PROBABLE PRIME |
View |
7(9)1199297 | (101199311) 2*(10119930+1) | RC | Apr 1 2011 | PROBABLE PRIME |
View |
7(9)1488597 | (10{148861}1) 2*(10148860+1) | RC | Apr 9 2011 | PROBABLE PRIME |
View |
7(9)2197397 | (102197411) 2*(10219740+1) | SB | Jan 14 2023 | PROBABLE PRIME |
View |
A082717 ¬ A056264 ¬ | (82*10n+71)/9 | ||||
9(1)19 | (10{3}1)/9 + 8*(102+1) | JCR | Oct 15 2002 | PRIME | View |
9(1)2459 | (102471)/9 + 8*(10246+1) | JCR | Oct 15 2002 | PRIME | View |
9(1)11399 | (1011411)/9 + 8*(101140+1) | DB | Jan 23 2003 | PRIME | View |
9(1)103939 | (10103951)/9 + 8*(1010394+1) | PDG | Jan 16 2003 | PROBABLE PRIME |
View |
9(1)438799 | (10438811)/9 + 8*(1043880+1) | PDG | Jun 23 2005 | PROBABLE PRIME |
View |
A082718 ¬ A056265 ¬ | (83*10n+61)/9 | ||||
9(2)19 | 2*(10{3}1)/9 + 7*(102+1) | JCR | Oct 15 2002 | PRIME | View |
9(2)59 | 2*(10{7}1)/9 + 7*(106+1) | JCR | Oct 15 2002 | PRIME | View |
9(2)119 | 2*(10{13}1)/9 + 7*(1012+1) | JCR | Oct 15 2002 | PRIME | View |
9(2)1099 | 2*(101111)/9 + 7*(10110+1) | JCR | Oct 15 2002 | PRIME | View |
9(2)36079 | 2*(1036091)/9 + 7*(103608+1) | PDG | Nov 14 2003 | PRIME | View |
9(2)377839 | 2*(10377851)/9 + 7*(1037784+1) | PDG | Jun 26 2005 | PROBABLE PRIME |
View |
9(2)1815439 | 2*(101815451)/9 + 7*(10181544+1) | SB | Jan 19 2023 | PROBABLE PRIME |
View |
A082719 ¬ A056266 ¬ | (89*10n+1)/9 [ n > 700,000 (by SB)] | ||||
9(8)59 | 8*(10{7}1)/9 + (106+1) | JCR | Oct 15 2002 | PRIME | View |
9(8)719 | 8*(10{73}1)/9 + (1072+1) | JCR | Oct 15 2002 | PRIME | View |
9(8)959 | 8*(10{97}1)/9 + (1096+1) | JCR | Oct 15 2002 | PRIME | View |
9(8)1139 | 8*(101151)/9 + (10114+1) | JCR | Oct 15 2002 | PRIME | View |
9(8)2039 | 8*(102051)/9 + (10204+1) | JCR | Oct 15 2002 | PRIME | View |
9(8)9839 | 8*(109851)/9 + (10984+1) | PDG | Dec 04 2002 | PRIME | View |
9(8)12259 | 8*(1012271)/9 + (101226+1) | PDG | Jul 01 2003 | PRIME | View |
9(8)47939 | 8*(1047951)/9 + (104794+1) | PDG | Dec 04 2002 | PRIME | View RC |
9(8)207199 | 8*(10207211)/9 + (1020720+1) | PDG | Apr 05 2003 | PROBABLE PRIME |
View |
9(8)1335799 | 8*(101335811)/9 + (10133580+1) | SB | May 15 2010 | PROBABLE PRIME |
View |
9(8)4115899 | 8*(104115911)/9 + (10411590+1) | SB | Sep 21 2014 | PROBABLE PRIME |
View |
[ May 13, 2023 ]
Data table for the PDP's ending with digits 2, 4, 5, 6 and 8 becoming prime when removing
all the prime factors 2 and 5 (i.e. A132740).
By Xinyao Chen.
Form | prime at n |
---|---|
(2(1^^n)2)/(2^3) | 25, 133, 193, 289, 511, 1075, ... |
(2(3^^n)2)/(2^2) | 7, 11, 37, 1743, 2023, 10123, ... |
(2(5^^n)2)/(2^5) | 5, 9, 21, 111, 153, 303, 339, 531, 965, ... |
(2(7^^n)2)/(2^2) | 7, 147, 301, 309, 1203, ... |
(2(9^^n)2)/(2^3) | 59, 107, 139, 251, 463, 1051, ... |
(4(1^^n)4)/(2^1) | ⩾ 300833 (none found, but a covering set does not appear) |
(4(3^^n)4)/(2^1) | 11, 39, 63, 113, 129, 323, 393, 905, ... |
(4(5^^n)4)/(2^1) | 1, 3, 19, 12475, ... |
(4(7^^n)4)/(2^1) | 3, 5, 23, 195, ... |
(4(9^^n)4)/(2^1) | 5, 17, 41, ... |
(5(1^^n)5)/(5^1) | 0, 1, 3, 9, 13, 31, 139, 211, 1203, ... |
(5(2^^n)5)/(5^2) | 3, 5, 527, ... |
(5(3^^n)5)/(5^1) | 0, 1, 3, 133, 139, ... |
(5(4^^n)5)/(5^1) | 0, 1, 3, 37, 63, 153, 283, 1179, ... |
(5(6^^n)5)/(5^1) | 0, 1, 5, 7, 25, 1157, 2609, ... |
(5(7^^n)5)/(5^2) | 1, 3, 19, 25, 85, 87, 103, 121, 4303, 23269, ... |
(5(8^^n)5)/(5^1) | 0, 3, 9, 23, 47, 59, 489, 4695, ... |
(5(9^^n)5)/(5^1) | 0, 5, 3191, 3785, 5513, 14717, ... |
(6(1^^n)6)/(2^2) | none exists (always divisible by 11) |
(6(5^^n)6)/(2^2) | 1129, ... |
(6(7^^n)6)/(2^2) | 11, 77, 911, ... |
(8(1^^n)8)/(2^1) | 1, 3, 69, 85, 399, ... |
(8(3^^n)8)/(2^1) | 1, 3, 63, 73, 183, 237, 835, 907, ... |
(8(5^^n)8)/(2^1) | none exists (always divisible by 11) |
(8(7^^n)8)/(2^1) | 1, 3, 7, 67, 133, 583, 703, 861, ... |
(8(9^^n)8)/(2^1) | 1, 11959, ... |
Click here to view some entries to the table about palindromes. |
I (PDG) also submitted all probable primes above 10000 digits
to the PRP TOP records table maintained by Henri & Renaud Lifchitz.
See : http://www.primenumbers.net/prptop/prptop.php
[ TOP OF PAGE]